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6. ABSTRACT 

This report contains-the theoretical analysis background for the STARS-2 system 
of programs. 
practical configurations in shells of revolution as those containing branching. 
is due to the fact that since the STARS program was created for practical shell 
designers and analysists initially, rather than being an analytical research tool, 
such options have continually been available in all versions since its inception in 
1963. 
and unsymmetric linear static analyses, and the stability and vibrations (also critica 
rotation speed) analyses involving axisymmetric prestress, which are programmed and 
available in the STARS-2S, -2B, and -2V programs respectively. It also contains the 
theory for nonlinear static, stability, and vibrations analyses, involving shells 
with unsymmetric loadings, which is not presently available in the above computer 
programs. 

The present theory does not attempt to rediscover the importance of such 
This 

The present report contains the theory involved in the axisymmetric nonlinear 

The user’s manuals for the statics program and the stability and vibrations 
programs are available as Volumes II and 111 of this series, respectively. 
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The contents of th i s  report can be divided into f ive basic parts. The first 

part presents the state of the art in  shell of revolution analysis, and briefly 

presents the theoretical advantages and disadvantages of the main numerical methods. 

The second part (Chapters 1 - 3) describes the s ta t ic  analysis pertinent t o  the 

STARS-2s program, and, in  addition, presents the necessary equations for extension 

into nonlinear analysis of unsymmetric loading. 

with the analysis of the classical buckling loads of shells of revolution under 

axisymmetric loadings (STARS-2B program), and unsymmetric loadings (not programmed). 

The fourth part (Chapter 5 )  deals w i t h  vibrations. The vibration and cr i t ica l  speed 

The th i rd  part (Chapter 4) deals 

analyses involving axisymmetric prestress are programmed in the STARS-2V program 

while the analyses involving unsymmetric prestress remin unprogrammed. 

part (Chapter 6) presents several analytical studies performed w i t h  the STARS 

programs, where certain formulation advantages, or discrepancies w i t h  other analyses 

were *uncovered. 

The final 

- -  

It w i l l  be noted that the present eigenvalue formulation for  the axisymm,etric 

problem has several advantages over previous formulations. 

advantages for  the unsymmetric problem are discussed in Chapter 4, however there are 

many unanswered questions in  t h i s  more complex area. 

need t o  be carried out before a more accurate picture of even potential advantages 

can be dram. 

Possible similar 

Several comparative studies 

i v  
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Subscript  meaning buckling increment  

Eccentricity of reinfor cement 

Bending stiffness 

Young' s modulus ' 

Direct s t r a in  components in  l a r g e  s t r a in  theory 

Distributed loads on the shell  

Shear  modulus 

Lame' coefficients; total  thickness of sandwich &.ell 

Subscript  meaning inside surface of ring; moment of iner t ia  
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Extensional st iffness 

Load matrix 
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Harmonic amplitudes of the circumferential ,  meridional, and radial  
components of displacement respectively 
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General  curvil inear coordinates 

Coefficient of t he rma l  expansion 

Rotation of the normal  to  the middle surface of the shell ;  
natural  frequency j ro ta t ion  speed 

Strain of the la rge  displacement theory 

' I  

. *  

Shear  components of the la rge  s t ra in  theory 

Shell coordinate normal  to the middle surface of the shell  
(positive inward) 

0, P Circumferent ia l  and meridional  shel i  coordinates 

Q. * 
1J 

V Poisson' s ra t io  

Normal  components of st r e  s s 

Shearing components of s t r e s s  

Distance to  the surface of the shel l  f r o m  the neutral  plane 

n 

A Deformation 
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INTRODUCTION TO NUMERICAL ANALYSIS O F  SHELLS 

Recent innovations in digital computer technology have enabled 

designers to analyze shell structures of complex configurations without 

unduly restrictive approximations. A number of versatile computer 

programs, based on various methods of analysis are presently available 

for the analysis of shells of revolution, 

solutions, the most commonly employed numerical methods of analysis 

w i l l  be briefly discussed and compared in the sequel. 

With the exception of closed form 

ifference Method: This method was first employed by Radkowski, 

et al, [ 1, Z]* in analyzing layered shells of revolution subjected to 

axisymmetric loading. In these references, the two second-order 

differential equations of the theory presented by Reissner [ 33 were solved 

by using central differences with a constant mesh. 

simultaneous algebraic equations w e r e  solved by Potter 's  method {,4]. 

Reference 1 is one of the few references wherein the finite difference 

The resulting 

I 
E 

method is employed in analyzing branched shells. 

considered. Sepetoski, e t  al. [ 51 employed a similar approach to study problems 

Only IIY branches" a r e  

which do not involve shell branching. However, the simultaneous equations 

resulting from the application of finite differences w e r e  solved by a 

non-matrix Gaussian elimination technique, Moreover, in this reference, 

the effects of the grid sizes and of the error accumulation in the Gaussian 

elimination technique on the convergence of the solution were studied. 

Budiansky and Radkowski [ 61 extended the technique presented in Reference 1 f 

to the analysis of shells of revolution (including shells with I' Y branches ' I )  

subjected to unsymmetric loading, using a shell theory presented by Sanders [ 71 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
* Numbers in brackets refer to the bibliography at the end of the report. 
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The load w a s  expanded in Fourier series and a variable finite difference 

grid pattern w a s  ;sed. 

of shells closed at the apex. 

shear deformation and extended the technique of Reference 6 to shells 

of variable thickness in the circumferential direction. The variable 

thickness w a s  expanded in a Fourier series, and the thickness harmonic 

amplitudes w e r e  coupled with the load harmonic amplitudes,i necessitating 

a modification of the procedure of Reference 6 to provide coupled harmonic solutions, 

Greenbaum [ 83 presented a refinement for the analysis 

Capelli, et al. [Si included the effect of 

, 

Techniques similar to Reference 6 were applied in Re-ferences 

10, 11, 12 to nonlinear problems. 

orthotropic, axisymmetrically loaded, shells of revolution, wherein non- 

linear terms w e r e  included in the equilibrium equations. 

volving shells with two boundaries, subjected to distributed and concentrated line 

loads, w e r e  considered using Reissner' s theory. The two second-order 

Hubka [ 101 presented an analysis of 

Problems in- 

differential equations w e r e  solved using finite difference approximations 

with a variable grid. 

w e r e  included. 

Gaussian elimination method specialized to banded matrices [ 131 . 
problems w e r e  solved by first solving the linear problem, and employing 

the computed in-plane stress resultants as input for the solution of the 

nonlinear equations. 

[ 14, 151 to solve axisymmetric nonlinear shell problems using the equations 

of Reissner [ 161. 

an iteration procedure for solving the simultaneous nonlinear equations. 

In this iteration process the matrices generated by the solution of the linear 

equations w e r e  used as the first approximation in the solution of the non- 

linear problem. The procedure w a s  repeated using the output of the previous 

iteration. This method converges very slowly for problems with significant nonlineal 

Options fo r  forward, central, and backward differences 

The resulting simultaneous equations w e r e  solved by a 

Nonlinear 

A similar method w a s  utilized by Wilson and Spier 

Moreover, they modified Potter's technique by addixig 

. 
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effects and it is necessary to  use $mall load increments for 

o t the  load. It was recognized by the authors that a Newtoni 

technique [ 17, 181 would be more suitable inasmuch as its convergence 

could be proven. 

solve nonlinear problems of orthotropic, 

of revolution, 

properties of the closely spaced rings and stringers over their spacing. 

Critical loads at buckling.for a shell subjected to axisymmetric loads 

Bushnell [ 191 utilized the Newton-Raphson method to 

eccentrically stiffened shells 

The effect of the stiffeners was treated by-"smearing"*the 

($or cases in which the buckling mode is also axisymmetric) a r e  established 

with this technsque. 

which the Newton iteration method converges. 

The buckling load in established a s  the last load for 

The same technique, with a more approximate iteration procedure 

was first applied to  shells of revolution subjected to unsymmetric loading 

by Ball [ 20, 211. 

the nonlinear terms included in the Sanders shell theory [ 71, used in Reference 

20, couple the Fourier harmon s.  The equations a re  uncouple 

solving the linear problem, and using the results to  obtain and introduce 

into the equations a numerical value for every nonlinear term. 

uncoupled equations a r e  solved by the methods of Reference 6 ,  each solution 

providing the numerical values for  the subsequent iteration. The buckling 

load is defined as the last load for which the solution converges. Stability 

cases where the buckled shape is out-of-phase with the applied load cannot 

be considered. 

Inasmuch as the loading is expanded in a Fourier series, 

The resulting 

With this technique, it should be noted that the number of 

- - - - - - - - - - - - - - - - - - - - - - - - - . - - - * - - - - - -  

* See Appendix A for a further discussion of this technique. 
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sets of uncoupled equations which must be solved is not constant, but 

increases as convergence progresses, inasmuch as coupling terms 

involving more harmonics are evaluated numerically as the analysis 

progresses. 

the technique of Reference 20 did not converge, and hence utilized a 

Newton iteration procedure. Moreover, it w a s  determined that the 

formulation of the problem in terms of sets of four second-order 

differential equation results in numerical inaccuracies in the finite 

difference solution. 

Greenbaum and Conroy [22] found that for certain problems 

For  this reason the formulation of the problem in 

t e r m s  of sets of eight first-order equations was employed. 

of this nature in the use of finite differences a r e  discussed in Reference 23. 

Complexities 

The technique presented in Refemria  22 has certain inconsistencies. 

using the Newton iteration procedure, the cross-coupling terms of the 

various harmonic amplitudes a re  dropped in order to work with uncoupled 

In 

sets of equations. 

a r e  also dropped. 

In addition, some terms from the Sanders' shell theory 

Finally, the analysis of Reference 22 cannot be used 

for post-buckling analysis o r  for establishing the critical load at buckling 

where the buckling mode is out-of-phase with the load, 

Eigenvalue problems of vibrations and stability of shells have also been 

solved using the finite difference method. 

stability and natural vibrations of shells of revolution with two end 

boundaries, under axisymmetric prestress,  using the methods of Reference 

6 .  The nonlinear theory presented by Sanders [ 71 is used to establish 

Cooper [ 241 has investigated the 

the equations of both the prestress state, and the incrementally d-isturbed 

state. 

proportional to e , and the frequency determinant is evaluated for a . 

sequence of assumed values of the frequency, until the correct frequency 

In the vibration problem the perturbation displacements a r e  assumed 
iw t 

is obtained as the one for which the determinant vanishes. Central differences 

4 



with a constant mesh a re  employed to reduce the four second-order 

differential equations to algebraic equations. 

Potters' method, 

The latter are solved by 

This method is modified [ 251 in order to avoid spurious 

changes of sign of the determinant. 

the buckling load is identical to that for establishing the frequency in the 

vibration problem. In the stability analysis, the prebuckling s t ress  -resultants 

and deformations are considered. In the vibration analysis, the rotational 

inertia is omitted. 

The numerical procedure for establishing 

Rossettos and Tene [ 26, 271 applied a very similar 

technique to the analysis of layered and orthotropic shells. 

was that they utilized second-order finite difference approximations in order 

to consider boundary conditions at the two ends with an accuracy consistent with 

that used for the analysis of the remainder of the shell. 

also used an almost identical technique with a variable finite difference mesh. 

The sole difference 

Heard and Fulton [ 281 

In References 29-37, a program for solving shell stability problems is presented. 

This program includes the effects of eccentric reinforcement on shells 

(smearing technique is used). 

a r e  treated by applying central differences to two fourth-order differential 

equations, and solving the resulting set of algebraic equations by use of 

the method presented in Reference 38. 

Both the prebuckled and stability equations 

Xf the prebuckling state is established 

on the basis of a linear analysis, the stability equations may be conveniently 

approximated by the form ( [A] t X [ B] ) I  x) = 0. Thus, the power method 

[ 391 may be employed to establish the critical load at buckling, avoiding 

the unoe rtaintie s inhe rent in the determinant evaluation method. In solving stability 

problems with the aforementioned program (BOSOR) the prebuckled state 

may be established by the nonlinear analysis of Reference 19. 

an eventuality, the determinant evaluation method is utilized. 

In such 

5 



Two-dimensional finite difference solution techniques have been used 

in solving vibration and stability problems in References 40 and 41. 

These two-dimensional techniques result in very large matrices, and 

therefore should be employed only in the absence of an alternative method 

(e. g. to inrestigate a shell cutout problem). 

Finite Element Method: In’ applying the finite element method which 

is actually an application of the Rayleigh-Ritz numerical technique, to 

the analysis of shells of revolution, two distinct types of elements have 

been employed: the discrete triangle o r  quadrilateral; and the revolved 

conical o r  curved elements. 

advantages and specific areas  of application, Generally, in the 

application of finite elements to shell analysis, the following two basic 

questions remain to be resolved: 

i 

Each of the foregoing elements have special 

1. What is the effect of the geometric approximations between the 

elements and the actual shell surface, on the solution of the problem. 

2. Is it necessary to explicitly include rigid-body motion terms in the dis- 

placement function employed in the solution. 

I 

1 

The first conical frustum element was introduced by Meye). and Harmon [ 421 

The deformation of this element include membrane qnd bending components, 

and continuity of slopes and displacements was enforced on the inter-element 

nodal circles. 

of an analytical solutkm for a cone loaded solely along,the edge, and shell 

problems involving edge loading only were solved using the force mqthod. 

Grafton and Strome [ 431 derived the matrice for a, coqical element uging 

the displacement method. 

represent the deformation state. Friedrich [ 441 used a thick conic 

The deformation of the element was established op the basis 

. * I Simple polynomial forms were utilized to  

element whose deformation included shear deflections established by simple 

beam theory. 

cone solution 

Another conical element using anj analytical edge -1baded 

for  the deformation{of the element w a s  formulated by 

6 



Lu, et al. [ 451, using the- displacement method. 

Wilson 1471, w e r e  &he first to apply conical elements to solve problems 

Percy, et al, [ 461 , and 

of shells subjected to unsymmetric loads. The non-symmetry w a s  

analyzed by use of Fourier series, In Reference 46 the effects of 
I 

utilizing various order polynomials to repre sent the displacement functions, 

were investigated. 

A tharough study of the conical frustum element w a s  performed by 

Percy, et al, , [46] and by Jones and Strome [ 483. They encountered 

considerable disadvantages in the use of this element for the analysis of 

doubly-curved shells. Fo r  predominantly membrane problems, due to the 

change of angle between adjacent elements, the kinks at the nodes produce 

calculated meridional bending moments where none exist. 

wherein the rotations at the boundary a re  unconstrained, erroneous 

For  problems 

displacements of the boundary are calculated, Moreover, it is essential 

to use extremely short cone elements a considerable distance in from the 

end boundaries, A s  indicated in Reference 48, optimization of shells by 

careful variation of the thickness o r  geometry is not possible when conical 

frustum elements are used. 

sokne of the'. e r r o r s  cancel each other. 

In static problems using conical elements , 
However, this cannot be anticipated 

in the case of dynamic analyses where rapid meridional membrane stress 

v a r i a t i h  may occur. 

Strome [ 491 introduced a doubly-curved revolved element where the coordinates, 

sldpe, and hoop principal radius of curvative, we re continuous 

functions thrbughout, and, at the nodal circles, w e r e  identical to those of 

the actual shell. 

discontinuous. function at the nodal circles. 

refinehents for application at the apex of a shell w a s  developed by Stricklin, 

et. al. [ 501. 

To overcome the foregoing difficulties, Jones and 

I 
However, the meridional radius of curvature w a s  a 

A similar element with special 

Khojasteh-Bakht [ 511 developed the matrices for a doubly-curved 

7 



revolved element matching the tangents and curvatures of adjacent elements 

at the nodal circles. 

produced by Brombolich and Gould [ 521. 

Stricklin, et. a l . ,  used the elements of Reference 50 to solve 

A geometrically 'still more rkfbned rev6lved element was 

nonlinear problems of axisymmetricarly loaded shells whose thickness 

and material properties were both axisymmetric [ 531 and non-axisymmetric 

[ 541. 

simultaneous equations involving coupled harmonic amplitudes similar to 

that solved in Reference 9 (on the basis d?' finite difference techniques): 

It has been shown that it was not necessary t o  include explicit rigid body 

displacement te rms  [ 50, 54, 55, 561 in the deformation functions of these revolved 

curved elements. ' 

The non-axisymmetric, nonlinear problems resulted in a set of 

Dynamic and stability problems were also solved by the use of 

these revolved elements. Klein and Sylvester [ 571 and Bacon and 

Bert [ 581 solved shell vibration problems by using conical frustum elements. 

The latter authors included transverse shear deformation and rotatory 

inertia, and analyzed sandwich shells. 

orthotropic shells of revolution were found by Leimbach, et.al. [ 591, and 

Mode shape s and frequencies of 

subsequently by Adelman, et, al. [ 60, 611 using elements better fitting the 

geometry of the shell. 

by Abel and Popov [ 621, and nonlinear vibration problems were considered 

by Stricklin et. A. [ 631. 

frustum and the curved revolved elements to the solution of linear buckling 

The mode shapes of sandwich shells were calculated 

Navaratna, et. al. [ 641 applied both the conical 

problems, for shells of revolution subjected to axisymmetric loads. Each 

possible Fourler harmonic mode of buckling must be checked to find the 

lowe st eigenvalue. 

It should be noted that the principal advantage of utilizing revolved 

finite elements instead of finite differences is that arbitrarily branched 

shells of revolution may be analyzed in a routine manner by using revolved 

finite elements. 
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Shells w e r e  also analyzed using discrete triangular o r  quadrilateral 

elements. 

Melosh [ 651. 

flexibility, and may be used to analyze shells with material properties ranging 

from isotropic to aelotropic. 

plate elements to the analysis of thin arch dams. 

Flat triangular elements w e r e  developed for this purpose by 

These elements accounted for membrane and bending 

Zienkiewicz, et. al. [ 661 applied triangular 

Notwithstanding the continuous 

interest in these applications [67], flat elements may be more inadequate 

than the conical frustra E481 in the representation of curved surfaces, 

particularly in predominantly membrane stress areas. Solutions obtained 

using a number of flat e'lements were tested for convergence [ 68, 691, and 

it w a s  concluded that solutions of bending problems of curved structures 

employing these elements do not always converge. 

use of flat elements for the solution of problems involving curved structures 

i' 

In addition, since the 

requires very large matrices, flat elements should be limited to problems 

involving arbitrary shells o r  shell cutouts, for which large matrices are 

obtained no matter what element is used. 

The inadequacies of flat elements led to  the development of curved 

quadrilateral and triangular elements. The more general curved 

triangular elements can readily de scribe arbitrary cutout boundaries. 

The earlie st constant curvature quadrilateral demen t  was  developed 

by Gallagher [ 701 by applying the shell theory (non-shallow) presented by 

Novozhilov [ 711. Although the displacement function chosen does not include 

rigid body te rms  nor does it lead to  displacement continuity at the element 

boundaries, the results obtained converge satisfactorily, Geometrically 

more flexible quadrilateral elements w e r e  developed using shallow shell 

theory f 721 and finite differences by Szilard and W e s t  [ 731, and subsequently 

by Tsui, et. al. [ 741, who also included the effects of shear deformation. 



Bogner, et. al. [ 751 developed a cylindrical element wherein the dis- 

placement fwction includes both rigid body motion and satisfies the 

compatibility requirements. 

linear shell behavior [ 761. More recently, a large variety of curved 

quadrilaterals have been developed: Conner and Brebbia f 77,781 (the 

This element w a s  later used to study non- 
I 

Marquerre [ 791 shallow shell theory with nonlinear effects wa.s employed 

in Reference 78), Cantin and Clough [ 801 (cylindrical element with a 

thorough discussion of the requirements for inclusion of rigid body’mokion 

te rms  in the displacement function), Wempner, et ,  al. f 811 (transverse 

shear deformation is included), Ahmad, et. al. [ 821 (transverse &ear 

deformation is included), and Key and Beisinger [ 831 (the displacement 

function is represented by Hermitian polynomials, and shear deformation 

is included). t 

I 

In Reference 73, vibration problems were first solved using curved 

quadrilaterals. 

shapes and frequencies of curved fan blades employing curved quadrilateral 

elements. 

vibration problems. 

of Novozhilov. 

Yang [ 861 in problems of stability of shells. 

More recently, Olson and Lindberg f 841 established mode 

Greene, et. al. [ 851 also used a quadrilateral to study shell 

The shell theory utilized is the non-shallow shell theory 

The element of Reference 70 w a s  used by Gallagher and 

Early work in the development of curved triangular elements w a s  

performed by Utku [ 87, 881, Prince [ 891, and Svalbonas [ 901. 

utilized the Marguerre shallow shell theory, and included shear deformation 

effects. 

a constant curvature trianglar shell element, based on the non-shallow shell 

theory of Novezhilov. 

Reference 90 in conjunction with the non-shallow shell theory of 

Novozhilov, to develop a family of orthotropic, arbitrarily curved, triangular 

Utku 

Prince employed the three sub-element technique [ 911 to develop 

The three sub-element method d a s  also utilized in 

10 



8 

shell dements. Curved triangular lements were recently developed by: 

Argyris and Scharf [92] (63 degree of freedom element in a natural” 

coordinate system), Dhatt [ 931 (shallow shell theory with shear deformation), 

Strickland and Loden [ 941 (Novozhilov shallow shell theory), and Bonne s, 

et. al. [95J (three sub-domain method with Reissner [ 961 shallow shell 

theory). , 

I f  

l 

I 

It should be noted, that the accuracy of’ solutions obtained by using discrete 
I 

doubly-curved finite elements has mainly been verified only for simple classical 

problems. Thus, before definite conclusions can be drawn a s  to the 

suitability of Some of these elements for  solving problems involving Shells With 

complex cutouts, additional, broader, comparisons must be made. 

This method was utilized in a general form 

in References 97,98, and 99. 

revolution, using the non-shallow shell theory of Novozhilov and the Runge- 

Kutta method of forward integration. 

solved by Gaussian elimination. Both thermal and mechanical loads a re  

considered, however, shell branching is not included. The unsymmetric 

loadings a r e  expanded in Fourier series, and each harmonic is analyzed 

separately. Kalnins [ 981 solved similar isotropic shell problems using 

the Reissner shell theory, the Adams integration method, and the Gaussian 

elimination technique. Again the analysis is limited to problems involving 

two end boundaries. 

completely arbitrary branching characteristics, subjected t o  adsymmetr ic  

load, using the non l i ea r  Love-Reissner-Kempner [ 1001 shell theory and 

the Runge-Kutta method of forward integration. The arbitrary branching 

w a s  accomplished with a finite element type (direct stiffness method) solution 

of the matrix equations. 

Cohen [ 971 analyzed orthotropic shells of 

The resulting system of equations is 

Mason et. al. [ 991 analyzed isotropic shells with 

The nonlinear solution w a s  identical to that of 
$ 1  

11 



Reference 10, discussed previously. 

this method to the analysis of shells of revolution subjected to  unsymmetric 

loading, using a linear shell theory. 

Rung, et, al. [ 101, 1021 extended 

The direct stiffness matrix solution 

technique was adapted by Svalbonas [ 1031 to orthotropic, second-order shell 

theory, including the effects of shear deformation and thickness stretch. 

In this reference, the nonlinear analysis of shells of revolution under 

unsymmetric loading is discussed, using a similar technique to that later 

utilized by Ball [ 201 (see finite difference discussion). The aforementioned 

method was applied to the analysis of shells of revolution comprised of 

orthotropic layers [ 1043, and of sandwich construction with shear deformable 

cores [ 1051, 

end boundaries, under an axisymmetric load, w a s  presented by Kalnins and 

Lestingi [ 1061. 

to solve the nonlinear problem. 

connection w i t h  Guyan [lZ] reduction, was applied t o  the analysis of orthotropic 

stiffened shells subjected t o  s ta t ic  loads i n  the STARS-I1 program developed f o r  

NASA by Svalbonas, e t  a l .  [107-110]. 

of problem of shells of revolution wi th  arbitrary geometry as shown i n  Fig. 1. 

Moreover, t h i s  program may be used i n  conjunction w i t h  discrete f in i te  element 

analysis [111J . 

Another nonlinear analysis of shells of revolution, with two 

In this reference, a form of Newton's methbd was employed 

The numerical integration technique, im 

This program my be employed i n  the solution 

Calculations of natural frequencies and modes of vibration of shells of 

revolution using numerical integration was first accomplished by Kalnins 

[ 1121, who included the effect of rotatory inertia. 

entail isotropic shells w:+h two end boundaries. 

established by evaluating the frequency determinant. Orthotropic, ring - stiffened 

shells were analyzed by Cohen [ 113j, who used numerical integration and a Stodola 

type [ 1141 iteration technique. This iteration technique commences by assuming a 

value fo r  the displacement components, setting the frequency to unity, and evaluating 

The problems solved 

The frequencies a r e  

12 
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numerically the inertia terms. 

substituted in the equations of motion resulting in a set of nonhomogeneous 

equaticns, the solution of which yields a first estimate of the mode shapes. 

An estimate of the frequency is then obtained by evaluating the Rayleigh 

quotient. 

of the mode shapes a r e  used to obtain a new set of numerical values for the 

inertia terms, 

from two successive iterations vary by an acceptable e r ror .  

These values of the inertia terms a r e  

This value of the frequency, together with the estimated values 

The process then continues until the mode shapes obtained 

It can be 

proven that this method, 

converges t o  the smallest frequency. 

also known a s  the inverse power method [ 1151, 

The frequency determinant evaluation method a s  well a s  the Stodola 

method have certain advantages and disadvantages [ 1161. In the Stodola 

method, the lowest eigenvalue cannot be skipped, a s  is possible with the 

determinant evaluation method; however, if higher values of frequency a r e  

needed, the Stodola method requires modifications for sweeping-out" the 

lower frequencies, and eigenvalue shifts to avoid slow convergence [ 1141. 

I t  

A generalization of the Stodola method w a s  used by Cohen [ 1171 to 

analyze the stability of orthot ropic, ring-stiffened shells of revolution with 

two end boundaries, subjected t o  axisymmetric loading, employing the non- 

shallow shell theory of Novoehilov. 

method, and Gaussian elimination a r e  used in the solution. The prebuckled 

state is obtained on the basis of a nonlinear solution and thus, the critical 

load and mode at buckling a r e  established by solving a sequence of modified 

eigenvalue problems. 

Fourier harmonic buckling mode is established. 

Numerical integration by the Runge -Kutta 

The lowest buckling load corresponding to each 

The critical load at buckling 

is the smallest of these loads. A similar analysis including the capability 

of analyzing shells with l tYrt  branches, using the determinant evaluation 

method, was presented by Kalnins [ 1181. In this reference an attempt 

14 



is made a t  establishing the critical load at buckling for  shells of revolution 

of certain ge,ometries subjected to single-harmonic unqnnmetric loading. 

: The three methods discussed herein a r e  approximate 

methods and, consequently, must be checked for accuracy o r  convergence 

of their results. The finite element and finite difference methods require 

a t  least two analyses with differeat* grids to establish wh 

of the grid used yields satisfactory solutions. The results obtained from a 

single solution by the numerical intekration method, however, m y  be checked 

automatically for each shell segment, Moreover, the representation of a 

shell by finite elements involves geometric approximations which a r e  not 

required in the numerical integration method. A disadvantage of the 

numerical integration method is that accuracy is lost when the shell is long. 

This however, is overcome by segmenting the shell into shorter pieces. 

A serious difficulty with the finite difference method is the instability 

of the solution at fine mesh sizes, and the slow convergence of the results 

obtained, from single precision computer programs. 

an example of the instability of the solution is shown in Figure 2. 

For  a stiffened cylinder, 

Introduction 

of double precision requires a reduction of the number of mesh points which 

appreciably limits the scope of a program [ 311. 

may not always converge asymptotically as tlns number of finite difference 

stations increases [ 401. In References 26, 27, and 119 it w a s  indicated 

that the e r r o r  associated with finite difference approximations of a given 

It should be noted that the solution 

order is larger close to the boundary. Thus, the overall accuracy of the 

results may be increased if  finite difference approximations of higher order 

a re  used at the end boundaries. Generally, in order to accurately establish 

the s t ress  distribution near the shell boundary o r  at regions of high 

s t ress  variation, o r  to properly locate shell discontinuities in curvature, 

thickness, etc., a mesh of variable spacing is required. However, the regions 
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of high s t ress  variation cannot be predicted apriori  and, consequently, 

the mesh of the first t r ia l  may be extremely fine in some regions 

of the shell and very coarse in others. In the use of variable mesh, the 

variation of the order of the e r r o r  in the formulas, must also be considered. 

In the numerical integration method, however, the aforementioned difficulties 

a r e  eliminated by automatically controlling the integration interval so as to  

obtain a solution of uniform accuracy. 

Kutta integration formulas are of thd order 0f.h -, whereas, .i.n the finite 

differences employed in the afoyementioned references, the e r r o r  is of 

the order of h . 
by finite differences and by the numerical integration method for spherical 

caps subjected to uniform pressure,  

Finally, the e r r o r s  in, the Runge- 

5 

2 In Figure 3 a comparison is presented of the results obtained 

Finite element analysis of shells involves both mathematical 

approximations (those associated with a Rayleigh-Ritz analysis) and geometric 

approximations. The geometric approximations associated with revolved 

finite elements a re  discussed in detail in Reference 48. A s  previously 

noted, an advantage of the finite element method i s  that it may be 

employed to analyze arbitrarily branched shells in a routine manner. 

Numerical integration methods can also be employed to analyze arbitrarily 

branched shells [ 1071, moreover, to obtain the same accuracy in the solution, 

much coarser idealizations can be used with the numerical integration method than 

with the finite element method. Finally, the components of s t ress  and dis- 

placement obtained by the numerical integration method a re  of the same 

accuracy, whereas, the order of accuracy of the components of s t ress  

obtained by the finite element method is less than the order of accuracy of 

the components of displacements. . 

17 
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CHAPTER 1 

FORMULATION OF THE GENERAL NONLINEAR SHELL EQUATIONS 

Strain- Displacement Relations : The nonlinear s train-displacement 

equations for the Love-Reissner-Kempner shell theory a r e  developed in 

Reference 100. A synopsis of this development ensues. 

Consider a deformable body in a state of s t ress  due to surface trac- 

and the unit shears Tu,, 
tions and body forces. 

EB, E point is defined by the unit elongations E,, 

(i= U, 8, y )  represent the change of length per unit length, due to the deforma- 

tion of a line element which was in the ith direction prior to deformation. 

I'..(i, j = a, B, y) represent the change in angle, due to the deformation between 

two line elements which prior to deformation were in the ith and in the j 

directions (i fj). 

The deformation in the neighborhood of a material 

Y' 
referred to a system of orthogonal curvilinear coordinates U, 8, y. E. By'  ruy 1 

r 

1J th 

The unit elongations and shears a r e  related to the strain 

components e.. (i, j 
1J  

= U, B, y) by the following relations [121] 

1 Eu(l  t -E ) = eUu 2 u  

1 ES(l + - E  ) = eBB 2 $  
1 E ( I t - E  ) = C 

Y 2 Y  YY 

The strain components, e.., a r e  sufficient and convenient measures of the 
1J 

deformation in the neighborhood of a material point, defined in terms of the 

displacement components by the following relations [ 1211 

1 2  1 2 1  2 
= e  t Z [ e m t ( - e  t w ) t ( - e  - w S ) ]  euu uu 2 aS y 2 UY 



2 
- w J  

e = e  t Z [ e Y y t ( Z e y a t w P )  I 2  I 2 1  t (  

(1 -2) 

YY VY 

I I I -w ) + e  (-e +a ) t ( Z e w - w  )(-e tucr) 

E f 3 Y = E Y p =  + e  p g 2  (-e f3Y -w cy ) t eW(Zew cu 2 pa y 2 ucutwg) 

= e*pteQcu(Ze*p y f3p 2 cup y B 2 m E = E  
QP PQ 

i i I 1 
t w  )+(-e. - w  )(-e 

I I I I E = E = e  + e  (-e -0 ) + e  (-e t o  )t(-e - w  )(-e t u y )  
ya ay vcu yy 2 ycu p QtY2 YQ p 2 yp 6, 2 cup 

The quantities e.. and w . (i, j = cy, p, Y ) a r e  defined by [ 1211 1J 1 

e = e = (H  / H  )(v/HP) t (H / H  )(u/H ), 

e = e = (H / H  )(w/H t (H / H  )(v/H ), 

QP PQ P e  , a  a P  Q B  

Pv Y F  Y P  P Y  B Y  

u(a, p,y), v(a, & e )  and w(a, p,y) a re  the components of displacement along 

the coordinates a, p, y ,  respectively; w i ( ~ ,  p, y )  a re  referred to as  the 

20 



components of rotation; 

cy, g, y coordinate system. We shall make the assumption that the unit 

Ha, Hg, HY, a r e  the Lame coefficients of the 

elongations, the unit hears and the rotations a r e  sma 

unity. On this basis, it can be shown [ 1211 that 

i =  j i j  E i =  E 

r.. =E.. i f j  
1J 1J 

Taking into account that Wf may be of the order of magnitude of e.., 

Equations (1-2) reduce to 

1J 

1 2 2  
YY YY P 
E = e t z ( w ( y t w  ) 

Ern = ern - w Y w P  

E = e  - W O  
Yo! Yo! Qr v 

If the assumption is made that ai a r e  of the same order of magnitude a s  

E.. , the above relations reduce to  
1J 

E.. = e.. i, j = g, Y (1 - 6 )  
1J 13 

Consider i thin shell. The position of points on the reference s u r -  

face of the shell wil l  be determined by the curvilinear coordinates cy and 

p which a r e  lines of principal curvature of the reference surface. The 

21 



position of a general point P of the shell wil l  be specified by the coordinates 

cy and p of the base of the perpendicular from point P to the reference 

surface, and the distance 5 measured along this perpendicular. Referring 

to Figure 4, for a shell of revolution, these coordinates a r e  designated by 

8, pa and 5 . The Lame coefficients for a general shell of revolution may 

be written a s  

H = ri (l-':/ri) 
$ (1 -7) 

Referring to Figure 4, the Lame coefficients for the reference surface, when 

clr << 1, a r e  I the radii of curvature (ro, r l )  of this surface, and must 

satisfy the Gauss-Codaaai compatibility relations [ 1211 given by 

= r cos cp 
0 2 4 )  I r 

In obtaining the above equations the following geometrical relation has been 

employe d. 

ro = r2 sin (1  -9) 

In general, the displacement components in a shell may be expanded 

in a power series expansion of the s coordinate 
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We shall assume that it is sufficient to retain onlythe first two terms in  

the above series. 

line normal to the reference sur emains s t ra i  ubsequent to 

This is equivalent to the Kirchoff assumption that a 
I S  ' 

formation. Moreover, we shall make the second Kirchoff assumption tha't 2 

a line normal to the reference surface remains normal to the deformed r e  - j.. 

ference surface. 

assume that the second te rm in the expansion for w(a, p, 5 )  is small a s  

compared to  the first te rm and it can be disregarded. 

tions ( 1  -10) reduce for a shell of revolution to 

This implies that f = 0. In addition, we shall 

On this 

w(e,  q,s ) = w(e, p) 

Substituting Equations (1 - 11) into Equations ( I  - 3), and using Equations 

(1 -8) and (1 -9) it can be shown that 

(w, et u sinp) 1 
%= - -  r 

0 
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The above relations correspond to  the Flugge-Byrne shel l  theory [ 122,123 
1 ,  

They may be fur ther  simplified by disregarding - 1: (i = 1, 2) a% compared t9 
r. 
1 

unity. Thus, ,Equations (1-12) reduce to  the following relations of 

Love -Re t s  sner  -Kempner accuracy 

e 00 = e  88, - e k e  . .  

(1-13) e = e  -ck WP wJ0 9 

eQq= e -2Ckeq 
eCPO 

where: 
1 eee = - 1 u, e t v cos (rp - w r i n q t  r 

0 0 

'1 
wo '1 

e = - {KCP - w )  

U 1 e = - {v, e -  u c o s  
eCPo ro rl (1 -14) 

and we, w have been defined in Equations (1-12). v 
For  thin -walled shells,  generally the rotation component is 

"CP' and may be 
considerably smaller than the rotation components we, 

disregarded. Thus, for thin shells,  the non-linear s t r a in  Equations (1- 5) 

can be fur ther  simplified to  give 
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i 2  
% e =  eee 2 cp t - w  

(1-15) 

ecp a r e  assumed negligible compared to e uy= €ec and e €By= €epg 

(1-16) 

(1-17) 

where T is the temperature distribution in the 6 direction, and the integrals 

a r e  taken over the thickness of the shell (see Figures 5 and 6). 

definitions, the coordinate ' ' 5"  is assumed negligible compared to I ' r l ' .  

this order of approximation, the difference between the inside and outside 

dimensions of an element of the shell becomes negligible [124]. 

assumptions were not made, then N ecpf NepeandMecp f -Mcpe, since the radii 

associated with the cp and 8 directions a r e  generally, unequal (r l  f r2). 

In these 

To 

If these 

Introducing the stress-strain relations for an orthotropic body in a 

state of plane stress into Equations (1-16), (1-17), using Equations (1-13), and 
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9 ,  

Figure 6 Moments On Shell  Element 
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assuming that the reference surface is the centroidal surface of the shell, 

i s  

we obtain: 

(1- 18) 

where the extensional (Klr  KZ2), bending (Dll, DZ2), and in-plane shear 

(K33, D33) stiffnesses are defined as 

- Eeh 
K1l - l -VqeVeq)  

- 
K22 - l-vq)eveq) 

K33 = G q e h  

Additional relations 

Figure 7. 

G h 3  - A  
D33< - 12 

(1-19) 

for different wa l l  cross -sections are presented in 

Equilibrium Equations: In Reference 100 the following nonlinear 

stress equilibrium equations are obtained 
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-(M$ro),ep- rlMg,e - Mer1 cosep t r l 0 e  r Q = -r 1 0  r m ep  

where 

fc  = Fc(l t €88 t C ) -  F W t FqWe 
0 W O  Q C P  

(1-22) 

where Fi(i = e, p,6) a r e  the applied forces tangential and normal to the de- 

formed shell surface, whereas fi(i = 8, ep, 6 )  a r e  the forces along the unde- 

formed coordinate system (see Ref. 137). The first three of Equations (1-20) 

a r e  obtained by setting to zero the sum of the 8, ep  and 6 components of all  

the forces acting on a shell element. 

a r e  obtained by setting to zero the s u m  of the moments about thei,, i 

The last three of Equations (1-20) 

and 
7' 
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i axis. As a result of the a s  sumption that 5 r, the sixth equilibrium equation can- -6 
notbe satisfied exceptfor the special case of a sphere. However, within the frame- 

work of the present theory, this equation will not be employed in the solution of shell 

problems. 

Boundary Conditions: As shown in Reference 100, for a unique 

solution either displacements - or  corresponding s t ress  resultants 

specified on the boundary cp = constant. 

cpe 
U or T 

cp 
V or  N 

* 
or  J* = J -r f 

cp cp 140 
W 

(1-2 3)  

o r  M 
cp 

* 
The quantities T , J , J a r e  referred to as the effective s t ress  resultants 

and a r e  defined by: 
4pe cp 40 

M * sincp r Tcpe = Npe - 0 

M 
J = Q +  

r cp cp 0 

J* = J - N  w S N w e  
cp cp cpecp cp 

(1-24) 

Convenient Form of the Shell Equations; In this section, the stress- 

resultant, strain relations and the stress-resultant equilibrium equations w i l l  be 

combined to obtain differential equations suitable for the Runge-Kutta integration 

procedure to be used in their solution [: 125-1285 Be eliminating the strains 

and curvatures in Equations (1-18), using Equations (1-13) through (1-15) and 

the relation between the elastic con8tants veq Ee = v E , the following 

relations between the s t ress  resultants and the displacements may be obtained, 
cpe cp 
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u, @+ vcos cy - w s i n q  i 

(1-25) 

Using Equations ( l - lz f ) ,  (1-24a), and (I-25c) 

(1 -26) 
T 

'osr~ t w s i n q t  xe s i n q  
% K33 

-2w, 
e ro 

The final form of the differential equations necessary for t 

integration procedure [ 1281 may be divided into two groups. 

group of four differential equations is obtained by eliminating Q, from the 

Runge - K u t t i  

The first 
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equilibrium equations, and by introducing the effective s t ress  resultants 

defined by Equations (1-24) and their derivatives with respect to 40, 

-f (1 -27) 
rp 

i 

! 

The second group of four differential equations is' obtained by combining 

Equations (1-lZe), (1-24a) and (1-25b, c, e). 

(1-28) 
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In Equations (1-27) and (1-28) the s t ress  resultants Ne, N ,the resultant 

moments Me, M the rotation, , and the effective s t ress  resultant, 

J , may be eliminated by using Equations (1-25a, a), (1-26), (1-24a, c)  and 

(1-12f). 

@ 
' 

0 
The equations for these variables may be rewritten as, 

T 
-2w, *t w w s i n p  t A s i n q l  

e =o QJ K33 

M 
t A?. s inq  r Npe = Trpe 0 

(1-29) 
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* J = J  + N  w - N w  
5 0 5 0  (Pep 0 J 

, I ;  

Equations (1-27) through (1-29) represent a complete formulation of 

(1-29) 
* 

J = J  + N  w - N w  (1-29) 
5 0 5 0  (Pep 0 J 

, I ;  

Equations (1-27) through (1-29) represent a complete formulation of 

the nonlinear problem for a thin orthotropic shell, on the basis of the 

Love -Reissner -Kempner theory. Analogous formulations may be obtained 

by employing other shel l  theori,es. The basic differences between the 
1 

various formulations wil l  be in the coefficients of the equations, and in  the 

number of differential equations. For example, in theories involving shear 

deformation ten basic differential equations may be obtained [ 1051. 

For general doubly-curved &'hells, the above equations may be 

written with the angle q~ as ' the independent variable, whereas, for cones 

and cylinders they may be written more conveniently with the a r c  length 

s (s = rldq) as  the independent variable. : The stregs resultants and dis - 
placements involved in these equations may be expanded in Fourier series 

in the 8 direction. Thus, Equations (1-27) and (1-28) wil l  constitute a 
! 

basic system of '8 first-order ordinary differential equations in the variable 

(P , and Equations (1-29) wil l  constitute 6 algebraic equations. Notice, 

that derivatives of the shell geometric parameters do not appear in the coef- 

ficients of theae equations, More er ,  notice that the 8,unknown,variables . I  . .  

are the quantities which enter into the appyopriate bounqarypconditions on 

the edge R = constant of a shell of.revolution. . I ,  I I 

Equations (1-27) through (1-29) wi l l  be solved ,by a for.warq Pumerical 

integration procedure in Fonjunctiolp with the direct stiffness rqatri 

(see Chapter 3). I The stress res'ultants Q and Q, , not volved in &the 

above formulation, may be obtained from Equations (1-24b) ,and (1 -Foe), 
50 
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which may be reqrit ten a s  

Mcp% e 
Qp= Jp - r 0 

; 

r 

2 r cosrp r cos rpsinq 
) 

1 sin Q cos ~0 s a  I,@ + 
2. 2 - '  

2 r - 2  
- - cos@ sincp 

rl 0 
' rl )+u( r - 

r 
0 0 0 

r sincpcosrp 
(e incpS1)  - v , e  ( C O S @  - -2 1 - rq) - 2w, cos @ 

r ecp ro 
rl 0 '1 0 r 

0 

-vp eq  r 

Me e t- - m .  
rp ' I  r 

0 

I 

(1- 30) 

'The simplicity of the aforegoing formulation of the basic shea1 equations 

resulth in greater accuracy in the numerical solution. Notice that Equation 

(1-30b) involves derivatives of 'sh;eU geometric parameters. However, the 

computation of 'Q 

In solutions of nonlinear unsyrnmetric loading problems with finite difference s, 

this, formulation has bee'n found to yield more satisfactory results than one 

involving a basic system of four second-order differential equations [ 223. 

is a secondary operatibn in the solution of the problem. e 
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As previously mentioned, Equations (1-27) through (1-29) constitute 

a complete formulation of the problem for a homogeneous orthotrop 

For eccentrically reinforced shells, this formulation must be revis 

we consider the reinforcement as being smeared over its spacing length, 

a revision would be necessary in the Equations (1-18) to take into account 

the geometrical o rthotropy and reinforcement eccentricity. 

I 

This revision 

would affect only four of the Equations ( (1-28b, d) and (1-29aY b) ) i f  an 

appropriate shell reference surface is  chosen. 

The revised integrated Hooke’s Laws ( Equations (1-18)) are derived 

for several cases of Btiffening in Appendix A. Using these revisions, the 

following equations analogous to Equations (1-28b, d) and (1-29a, b) are 

obtained for shells with ring -stringer reinforcement: 

c22 - K12 - (u, $v cos q N + N  t- 
q T q  D2z(MqtMTq) T 0 

K22 
+ t  

(u, e+vcoscp - w sin@ - K12 
cp Tq r0 

N + N  - -  I 
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0 r 
0 

where the K. ., C.. and D.. stiffnesses a re  defined by Equations (A-8) 
1J 1J 1J 

in Appendix A. Equations (1-31) have been derived on the basis of the 

stress resultant - strain relations (A - 7) in Appendix A. 

more general form of Equations (1-31), valid for multilayered shells with 

general ring and stringer reinforcement, may be obtained by employing the 

stress resultant-strain relations (A -9) in Appendix A. 

The following 
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(1-32) 

The above equations may replace the corresponding relations in Equations 

(1-28) and (1-29) which may then be combined with Equations (1-27) to form 

the complete set of'equations for the analysis of problems involving a broad 

range of reinforced shells of revolution. In this formulation, the structure 

is symmetric about the axis of revolution, and thus, smearing for stringer 

reinforcement is unavoidable unless the formulation is further complicated 

by expanding the circumferential stiffness in a Fourier series, as shown in 

Reference 9. Ring reinforcement properti&, however, need not nec- 

essarily be smeared in such an analysis (see Appendix B), Indeed, in 

buckling problems, smearing of the ring or stringer reinforcing yields un- 

,satisfactory results in cases where the half wavelength of the axial or  the 

circumferential buckle pattern is smaller than the spacing of the reinforce- 

ment, 

for the case wherein the reinforcemerit of cylinders is spaced at exactly 

one-half wavelength of the buckle pattern, is approximated in Reference [ 1201. 

In order to eliminate this .difficylty for ring reinforcement, discrete ring 

equations are obtained in Appendix B, and cast into a form suitable for 

. .  

The errar resulting from sme4ring of. the ring or  stringer reinfgrcing 



inclusion in  the numerical procedure to  be employed. 

be utilized in  cases in  which the smearing technique is not suitable. 

These equations may then 

It should be noted that Equations (1-27) through (1-29) do not apply 

at a closed apex of a shell. A t  the apex, the radius of revolution, r 
0’ 

vanishes, resulting in a singularity in t,hese equations, as discussed in 

Reference 6 . This problem, however, may be circumvented as suggested 

in References 8 and 20 .  The necessary differential equations and apex 

boundary conditions are derived in Appendix C. 

42 



CHAPTER 2 

FOURIER SERIES EXPANSIONS 

Efficient techniques are not readily available for the numerical 

solution of partial digferential equations of the complexity of those formulated 

i n  Chapter 1. 

in  Fourier series expansions in  the cylindrical coordinate , 8,'it  is  possible 

t o  reduce the set of par t ia l  differential Equations (1-27, 28, 29) to  sets of 

ordinary differential equations. 

differential equations w i l l  depend upon the type of load dis  

and the degree of accuracy required. 

may be solved by employing a standard numerical integration procedure such as.the 

Runge-Kutta [125-128}. 

However, by expanding the applied loadin6 and the shell functions 

The actual number of sets  of ordinary 

ution considered, 

These sets of ordinary differential equations 

It is assumed that the applied surface loads can be satisfactorily 

represented by the terms for n = 0, 1,. N of their Fourier series expansion 

N 

n= 0 
sin ne) 0 cos n e t  m (me me = 
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Moreover, it is assumed- that the displacement components, the rotations, 

and the s t ress  resultants can also be represebted satisfactorily with the 

terms for n = 0, 1, . . .N of their Fourier series expansion. 



Linear Stress  Analysis: In problems involving linear s t ress  analysis, 

or stability or vibrations ofshells subjected to axisymmetric prestress loads, 

the substitution of the Fourier ser ies  expansions (2-1, 2) into the sets of 

partial differential equations (1-27, 28, 29) r e su l t s  in uncoupled sets of 

ordinary differential equations. These sets may be solved separately in 

establishing the amplitudes of the Fourier series expansions, which may 

then be employed in Equations (2-2) to yield the stress resultants and 

displacements. For instance, in problems of linear s t ress  analysis of 

homogeneous orthotropic shells, in which the applied surface loads can 

be satisfactorily represented solely by the terms of the Fourier series 

expansion (2-1) having primed amplitudes, Equations (1-27) through (1-29), 

yield ( N t l )  sets, of the following relations -- one set for each value of n(nm0, 1. . N): 

(n) sin@ -m r q 0 
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-1 (n) (coscp coscpsincp (n) s in@+ 1 - { -2nng(n)t u r )+nV ( - )  
r1 rl 0 0 

(n) ‘Os@ + T (n) sin@ t 2nW 
0 

(2-3) 

N is determined by the accuracy requirements of the load representation 

(2-1) and of the solution. 

for surface loads described satisfactorily by the te rms  of their Fourier 

series expansion (2 - 1) having double primed amplitudes, by substituting 

the second portion of Equations (2-2), into (1-27) through (1-29), or by 

substituting -n for n in Equations (2-3). 

A similar set of equations may be obtained 

If a reinforced or a laminated shell is to  be analyzed, the Fourier 

series expansions (2-1, 2) must be substituted into Equations (1-31) o r  (1-32) 

instead of into the corresponding Equations (1 -28) through (1 -29). 

It should be noted, that in all the above mentioned cases, the axi- 

symmetric torsional case (n= 0) is uncoupled from the axisymmetric n0n.i 

torsional case. 
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Nonlinear Stress Analysis: Nonlinear s t ress  analysis problems for 

shells may be classified in two major categories, characterized by 

axisymmetric and by unsymmetric loadings. The problem of s t ress  analy2 

of an orthotropic homogeneous shell of revolution subjected to axisymmetri 

loading is described by the following equations obtained by substituting the 

Fourier series expansions (2-1, 2)  w i t h  n=O into the set of partial differenti 

equations ( 1 -27) through ( 1-29). 
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where  

The nature of the nonlinear problem is evident from Equations (2-4) and 

(2-5). For example in a linear analysis, if solutions w e r e  obtained for a 

*load described by "io) , and for a load described by F (O) , the sum of 5 
these solutions wuld  represent the solution under a load described by 

(Fe (0) t F5(0) ). In a nonlinear analysis, the sum of the two solutions wi l l  

not represent the solution for a load described by (Fe (0) t FG'O)) .  

The presence of the cp derivatives in the right-hand side of Equations 

(2-5) does not result in additional complications. These derivatives could 

be eliminated by using Equations (2-4e, f). 

If reinforced or laminated shells are to be analyzed, the Fourier 

series expansion (2-1, 2), with n= 0, must be substituted into Equations (1-31) 

or (1 -32) instead of into the corresponding Equations (1 -28) through (1 -29). 

The formulation and solution of the nonlinear problem under unsymmetric 

loading is more complex. In all prior formulations of this problem [20,22, 
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103, 1041 , the applied loading could be described by a 

series. Thus, a line of symmetry was assumed in the 

If this assumption is not made, the full ser ies  must be 

Fourier half - 
loading distribution. 

employed. In this 

case, substitution of Equations (2- 1) and (2- 2) into Equations ( 1- 27) through 

(1-29) wil l  yield linear terms of the following form 

, (2-6a) 
r *  

and nonlinear terms of the following form 

(2- 6b) 

where A and B denote the amplitudes of the Fourier ser ies  expansion. 

order to  eliminate the coordinate 9 from the equations containing terms of 

the form given by (2. 6b), the double series product terms must be con- 

verted to the form (2-6a). 

In 

This may be accomplished by using trigonometric 

angle difference formulae 



(2- 7a) 

Similarly, the las t  t e rm of the right hand side of Equation (2. 6b) can be con- 

verted to a cosine series,  whereas, the other terms of Equation (2. 6b) can 

be converted to a sine series. 

The nonlinear problem involving a homogeneous, orthotropic shell 

of revolution under unsymmetric loading can be de scribed by substituting 

the complete Fourier series expansion (2- 1, 2) into Equations (1-27) to (1- 29). 

Then each of those could be reduced to the form 

(2- 7b) [coefficient #1] cos n e  t [ cwfficient #2] sin ne = o 

The requirement that the coefficients of the cos nb and sin ne terms vanish 

simultaneously, yields two sets of equations. The first set is: 
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A similar second set of equations can be obtained from the vanishing of the 

coefficients of the sin ne terms in the aforementioned equati ns of the form 

(2-7b). 

obtained by setting-n to -n in the set of Equations (2-8), 

This set of equations involves the ( '* ) harmonics. It can also be 

Notice that the 

harmonic amplitudes in each set a re  coupled. Morecver as can be seen from 

Equations (2-9a, b) both sets of equations a r e  coupled-through the non- 

linear terms.  

value of n, a s  in the linear case. 

Thus Equations (2-8) cannot be solved separately for each 

The nonlinear terms of Equation (2-8) are:  

(2- 9a) 
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(2- 9a) 
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(n-k) (k) "(k) '(n-k) '(0) "(11) 
n- 1 
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1 7' (~G(n-k)  '(k)+ F1l (k) (n-k)) 
"9 4 0 0  

+ 5  
k= 1 

a, 
(01 (n) '(k) (n+k) - F 1  (ntk) (k)) 

Q g  + 3 z. 'Fq "9 k= 1 

(n-k) (n-k) "(k) (0) (n) 

+ %  
n- 1 

k= 1 

00 n- 1 

k= 1 

% + Fq "e 1 - Fe 

"(n+k) < (k) - 4 k= 1 - Fe 

00 ( <(k) F;(qk) 
+ f$(k) Fe (n-k) ) - %" (O) F:n)- 3 

k= 1 

n- 1 

k= 1 
-4 ( $(k) Fi(n-k) + qqn(n-k) Fe '(k) ,I (2-9b) 

where a =  0 for n= 0, and a = 1 for n >,1. 

line of symmetry exists in the loading (as done in  earlier references), only 

the symmetric or  the antisymmetric half of the Fourier series expansion (2-1, 2) 

It is evident, that by assuming that a 

can be used, and consequently only one of the two aforementioned sets of 

equations is required. If we choose to use Equations (2-8) and (2-9a), for 

example, the latter a r e  simplified further since all the double primed te rms  
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become zero. As notedpr ed equations can be formulated 

for  the reinforced or  laminated cases. 

A s  will be discussed in Chapter 3, Equation 3) or  (2-4) and (2-8) 

will be employed to establish the stiffness matrices and the 

of the various segments of the shell, The numerical solution of the equations 

for  the linear analysis (2-3) may be attained by a technique described in 

Chapter 3. 

be linearized by the use of a suitable method. For instance in Reference 20, 

the harmonic amplitudes of the shell functions a r e  established throughout the 

shell by f i rs t  solving the unsymmetric linear problem. 

employed in Equations (2-9a, b) to establish a numerical value for the nonlinear 

To apply this technique to the non-linear equations they must first 

The results may be 

terms. In general, the linear analysis may yield a nurnber of zero harmonic 

amplitudes. For  instance, the linear‘analysis will yield nonzero harmonic 

amplitudes only fo r  the values of n corresponding to a non-zero load in  

Equations (2-1). Thus, if for  example, the load is described by the n =  1, 2 

harmonics, the linear analysis will yield only the O r o  and OF) harmonics 

of we. 

(2-9a, b) additional harmonics of we a r e  required, a s  fo r  instance Or) and 

ne); where n =  2,3.. . P, P beini the harmonic a t  which the infinite series 

i s  truncated. 

of the functions which a r e  not established by the preceding cycle of the 

However, to establish the values of the non-linear terms in Equations 

To obtain the values of the non-linear terms, all the harmonics 

analysis, a r e  set to zero. 

terms a r e  computed, and subsequently employed in Equations (2-4) o r  (2-8) 

The numerical values of the non-zero non-linear 

resulting in an uncoupled system of equations which may be solved to yield 

another set of values for the harmonic amplitudes. 

some of the equations for the harmonic amplitudes (2-4) o r  (2-8) may not 

contain actual load terms, but rather the numerically represented non-linear 

It should be noted, that 
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terms. Subsequently, the v harmonic amplitudes a r e  used to 

compute a nevi se t  of non-ii 

harmonic amptitUde s ‘the desired accuracy. Moreover, 

it should be noted, 

and the process continues until the 
; -  

e number of non-zero nonlinear 

g terms establis e of the analysis, the number of 

equations to be so’ive Although the aforementioned 

technique i s  the most strai 

certain cases 122, 131). 

y ?not converge , however , fo r 

In another method [9,1 ] the harmonic amplitudes a r e  also 

established from th 

Instead of utilizing 

ea r  part  of Equations (2-4) o r  (2-8). 

ical value of both terms in the non-linear products 

of Equations (2-9a, b) only one term is substituted numerically. Substitution 

of the linearized E s (Ztga, b) into Equations (2-4) o r  (2-8), yields 

sets of coupled lin 

does not result in  extreme 

integration method andag  that presented in Reference 107. The fore- 

going methods a r e  adequate orily for problems in which the effect of non-linear 

terms is small [14, 1333, a1 

methods may be employed in the solution of prsblems involving relatively 

large deflections. 

equaHons, which may be solved by any method that 

ge matrices; a s  for example, by a numerical 

ugh in Reference 20, it is indicated that these 

In the solutioyl of n lems the load should be applied in 

increments,, When the soluts nverges for one load level, the load is 

increased by another incr d the process continues until the components 

of Stress and displacement of the shell a r e  established for any value of the load 

desired. If tbe load is co ually increased, it will reach a value for which 

the s olytion diverges, 

sponding deformati 

ndicates,$hat for this value of the load, the corre- 

%e shell’ has reached a level of instability, 
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For ideally "perfect" s b "  

mation patterns, the claseic 

to that for which the sol 

whose buckling deformation patte 

of the loading, which 

Other methods f o r  e s  

in Chapter 4. 
. I  

It should be indicated, that the afQrernentioned so 

linear equations may not converge values of the d less than the i- 

mum value fo r  which the prebu*ling defor 

stable f22, 41, 1311. Thus, the aforementioned solu 

tive values of the load for  whichthe prebuckling de 

unstable. 

on-pattern of the shell is 
' t  

y yield conserva- 

on pattern becomes 

A method of proven convergence for the solution of nonlinear equa- 

tions is Newton's method [17, 181, wherein each harmonic am$litude is ex- 

pressed a s  'the sum of two parts, fan 'assumed solution, and a Correction to 

the assumed solution:. t 1. 

= Y  t A Y  ' m t 1  m 
(2-10) 

Equation (2-10) may be substituted into either EquatiLns (2-4, 5) o r  Equations 

(2-8,9a). The resulting equa 

as  well as  (OY) e In these equa the Y s a re  n-er lly known, from 

ns will contain terms of the tyfe (Ym)(AY) 
2 

2 
m 

iteration.: In a buck lysis the nonlin (AY) terms may 

be neglected. For a pos-tbuckli 

retained f129, 1301. 

prebuckling state, the linear AY correction equations will be uncoupled or  

si s, howe be r, e ter&s should be 

Restricting ourselves to a nonlinear analysis for the 
1 
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coupled depending upon whether axisymmetric (Equations (2-4) and (2- 5 ) ) ,  

o r  unsyrnmetric (Equations 2-8) and (2-9)) loading is considered. 

procedure is as follows: 

The 

First, the problem is solved for a small value 

of the load, where the linear theory is accurate. 

by using the aforementioned AY equations, but setting all the Ym terms to 

zero. 

The values of Ym + 

previous stepwere set  to zero) in the aforementioned 1\Y equations, pro- 

This may be accomplished 

The solutions for AY, and Ym= 0, a r e  substituted into Equation (2-10). 

thus obtained a re  bubstituted for the Ym (which in the 

ducing a set  of linear, coupled (if the load is unsymmetric) equations. These 

equations a re  now solved for new AYs, and these, with the current Y s, 

a r e  substituted in Equations (2,-10) to produce a new set of Ym+ is. 

procedure continues until the harmonic amplitudes a r e  established to the 

desired accuracy. 

m 
This 

The load on the shell is now increased by an increment 

and the whole procedure is repeated. The solution obtained for the previous 

value of the load, o r  a set  of harmonic amplitudes obtained by extrapolation 

can be used a s  a starting point. of the solution indicates 

that the las t  load increment has increased the value of the total load above 

the limit point (the point of zero slope of the load-displacement curve). 

solution may be repeated using a smaller load increment, and values of the 

total load a s  close to the limit point as desired may be obtained. The last 

value of the loadfor which the solution converges is taken a s  the maximum 

value of the load for which the prebuckling deformation pattern of the shell 

is stable. 

Non convergence 
I 

The 

I 

. .  
c , I  

Reference 22 essentially utilizes the foregoing technigus witkq one 

important simplification, 

harmonics a r e  disregarded. This is necessary inasmuch as  the f,inite dif- 

ference technique employed in Reference 22 results in large matrix equ8tions. Con- 

sequently, their solution becomes extremely time-consuming if the harmonics 

The nonlinear terms which induce coypling of the 
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I 

a r e  coupled. 

and for more complex problems, possible divergence a t  loads less than the 

+The penalty for this simplification is a slower convergence, 

maximum value of the load for which the prebqckling deformation pattern 

of the shell is stable. In a numerical integration procedure uf the tyna 

pre*sented in Reference 107, the resulting matrices can be mamtainec! a t  a 

reasonable size, and consequently it is no$ essential to make simplif.c:stions. 

Thus, by employing any of the aforementioned methods, the noli- 

linear problem simplifies to that of successively solving linear equations, 

which in the most complex case (unsyrnmetric loads) involves harmonic 

coupling. 

presented in Chapter 3. 

The prdcedure for  the solution of these types of equations is 

8 I 

For a postbuckling analysis, a s  noted earlier, the nonlinear terms in 

In addi- AY must be retained in order to cross bifurcation points [129,130]. 
I I 

tion, a method of proven convergence, such a s  the Newton iteration method 

must be used in the solution. 

the equation's for  postbuckling investigations. 

is exemplified by the case of a shell under axisyrnmetric loading only, wherein 

Some difficulties'do exist, however, in utilizing 
1 I > .  

The most important difficulty 

a postbdckled configuration may exis; which is described by harmonic ampli- 

tudes other than'the zeroth. In this case, a small "disturbance load" 

involving several harmonic amplitudes must be added to allow the shell to 

deform into the propel configuration in the pastbuckling range. This dis- 

turbance load must be small in magnitude, as compared to the primary 

axis'ymmetric.load,l but it must also be described Ijy a sufficient number of 

harmonics s'o that an adequate description of the postbuckled configuration 

may be obtained.. 
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CHAPTER 3 

Shell structures found in spacecraft, aircraft  engines, o r  submersibles, 

a r e  usually comprised of several, erconnected, singly and doubly curved 

shells. 

on the basis of the numerical integration method is dependent upon the length 

of the shell along the meridian. 

resultants and displacements a t  the one edge will have a negligible effect 

upon the s t ress  resultants and displacements on the other edge. This could 

result in a number of terms in the stiffness matrices which a r e  inaccurate, 

inasmuch as  they constitute small differences of large numbers. 

difficulty may be circumvented by subdividing the shell into segments by 

introducing fictitious boundaries. Such an approacli is amepable to the use 

of local coordinate systems, and includes the unique self-checking features 

discussed in the Introduction. 

lengths of segments fo r  shells of various geometries a r e  presented in 

F o r  a given shell geometry, the accuracy of the results obtained 

If the shell is long, the effect of the s t ress  

This 

Equations for establishing the appropriate 

Reference 108. for linear and nonlinear analyses, 

In this chapter, we shall first obtain all the matrices pertaining to 

single shell segments.. Then we shall proceed to couple these matrices 

together and apply the boundary conditions, in order to obtain. an overall 
, 

matrix equation describing the equilibrum of the total structure. 

solution of this equation yields the s t ress  resultants and displacemedts, 

The 

at the joints. These s t ress  resultants and displacements a r e  used in 



establishing the distribution of the s t ress  res ants and displacements 

throughout all the shell segments. 
. e  

A. typical shell segment is presented 

in Figure 8, 

Figures 9 through 13. Since the various shell segments may be described 

by different coordinate systems and different geometric variables, the 

Various possible geometries of shell segments a r e  given in 

r) 

st ress  resultants and displacements referred to the cooTdinates of a seg- 

ment must be transformed to the reference global coordinates. The edge 

forces on the typical shell segment in this global Z, R,9 system a r e  shown 

in Figure 14. The components of s t ress  resultants and moments referred 

to  a local coordinate system a r e  denoted by Greek subscripts(T 

whereas the components of s t ress  rsultants referred t o  the global coordinate 

system a r e  denoted by Latin subscripts (F T, FZa FR). 

moment is denoted by M. The appropriate coordinate transformation 

matrices then are: 

N , J* , M ), e' (P P P 

The global 
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Figure 12 Cylinder 
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Figure 14 Forces on Typical Shel l  Segment 
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0 0 

(3-2) 

-sinP. -cos40. 0 
J J 

cosP. -sin+). 
J J 

0 0 

0 0 

-sin Vi -cosPi 

cosPi -sinVi 

0 0 

(3-3) 

0 0 

-sin 9. -cosq. 
J J 

cos 40. -sin P. 
J J 

0 0 
(3 -4) 

where [ IFT], [ JFT], [ IDT], [ JDT] denote the I _Force - Transformation, 

the I- J Force Transformation, the A _Displacement - Transformation, and 

the I- J Displacement - Transformation matrices, respectively. 

i and j re fer  to the meridional coordinates of the beginning and end of the 

The subscripts 
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segment, respectively. These transformation relations a r e  valid for the 

func$ons F( 8 ,  rp ) and &(e ,  q ) as well: as, fpr the amplitudes of harmonics, k k 

In the sequel, the pertinent matrix equations will be written for one 

harmonic at a time; this will not result in oss of generality of the 
' 1  

( 7  

e discussed. However, the harmonics a r e  coupled for non- 

linear problems having an unsymmetric load. Thus, it would not be possi- 

ble to write the matrix equations for only one harmonic. 

size of the matrices would be multiplied hy N, the number of harmonics 

to be retained when the Fourier series ex ansions a r e  truncated. 

for a nonlinear problem with unsyrnmetric load, i f  N harmonics a r e  re -  

tained in the Fourier expansions, a typical transformation matrix may be 

denoted by [IFTN], and assumes the form 

Consequently, the 

Hence, 

0 
\ 

0. r IFTI I 
I 
0 - -  

[IFTN] = 

4Nx4N 
( 3-51 

i 

where "N" of 1 .  the 4x4 [IFT] matrices a r e  located on the diagonal. Notice, 

that for nonlinear problems involving unsymmetric loads, the other matrices 

such as the stiffness matrix, may not be block diagonal matrices. Such 

special matrices will be developed separately .as ;the need arises. 

Segment Stiffness Matrices: 

specific shell segment a r e  solved for different sets of initial conditions by 

the Runge - Kutta forward integration method. 

The suitable differential equations for each 

. I  

Any satisfactory Runge -Kutta 

81 



formula may be used [ i25] - [ 1271. 

is [ZZS]: 

The one employed in this investigation 

A t  
y1 '2 m 2 = Y  t -  

(3-6) 
. 

Y3 = Y t A t  Y2 m 

= Y  t -  mt l  m 6  m Y 

These relations may be employed to establish the value Y 

function at point (mt 1) if  the value Y of the function and its derivative 

of a mt l  

m . 
Y with respect to the integration variable, a r e  known at point m The m 

symbols used in  the above relations a re  defined as: 

A t  = the integration interval from m to (m-kl). 

Y =the value of the function at point m obtained by m nume r i cal integration. 

Y = the value of the function at point (mt 1) obtained by 
mtl numerical integration. 

Y l ,  Y2 = the first and second estimate respectively, of the 
values of the function at the mid-point between 
points m and (mtl) . 

Y = the first estimate of the value of the function at  point 
(mtl) .  

m 

( ) = derivative of the function with respect to the integration 
variable, 
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The Runge-Kutta integration method is employed in establishing the 

th  
values of the functions at the j 

of the functions at the ith edge of the segment. A number of points are '  

edge of a segment from the assumed values 

automatically chosen along the meridian of the shell segment, 

i , i t 1  , i t 2 . .  . m. .  . j-2 , j -1  , j . The spacing of the points is denoted 

by A t  , and may vary from point to point. The derivatives of the functions 

th at the i 

(1-26) The values of the functions and their derivatives a t  the i bound- 

a ry  a r e  then employed in establishing the value of the functions at point 

boundary a r e  established initially by Equations (1-24) through 

th 

*rr th 
(it 1) . The process is repeated until the values of the functions at the j 

edge a r e  established 

The process for establishing the values of the functions dt point m+l 

from those at point m is as follows. The values of Y (s t ress  resultants m 

and displacements) a r e  employed in Equations (1-24) through (1-26) to es- 

tablish the derivatives Y . The values of Ym and Y a r e  employed 
* * 
m m 

to compute Y These a r e  the values of the predictedstress resultants 

and displacements at the point midway between m and mt  1 . Subse- 

quently, they a r e  employed in Equations (1-24) through (1-26) to establish 

1 '  

4 
The values of Y a r e  then computed from Equation 1 '  2 the derivatives Y 

(3-6b). The values of Y represent a corrected estimate of values of 
2 

the s t ress  resultants and displacements at the point midway between 

m and mt  1 . These values a r e  then used in Equations (1-24) through 

(1-26) to establish the derivatives Y Subsequently, the values of Y 

a r e  computed f rom Equation (3-6c)  and employed in computing the values of Yg. 

* 
3 

e 
2 '  
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The values Y 

s t ress  resultants and displacements at the point (mt 1) 

mate Y 

represent the first estimate of the values of the predicted 
3 

A corrected esti- 

of these functions is then computed using Equation (3-6d). 
m t l  

Subsequently, the values of Y and Y are compared, and i f  they 
3 m t l  

differ by less than a set  tolerance, 

tablish the values of the functions at a point (mt2) , located at an interval 

2 A t  from point (m)  . If the values of Y and Y differ by more 

d l  , the process is continued to es-  

3 m t l  

thanthe set tolerance, d , the current A t  is halved, and the process is 

repeated until the values of the functions Y and Y differ by less 

than the tolerance d . Using the same interval A t ,  employed in the 

previous step, the process is continued to establish the values of the 

functions at point (mt2) . Thus, the interval A t  may vary from point to 

point. 

uniform accuracy in the solution s f  the differential equations. 

1 

3 m S  1 

This procedure is referred to as automatic step control, and provides fo 

As indicated previously, we will s tar t  by assuming the values of the 

th  eight shell functions (s t ress  resultants and displacements) at the i 

L boundary bf each segment, and we shall compute the corresponding values > 

of the eight shell functions at  the f h  boundary. 

of each of the eight functions we will set one function to unity and the 

To isolate the influence 

others to zero. The process is outlined schematically in Fig. 15.  In 

th  columns 1 through 4, one of the displacements at the i edge is succes- 

sively set  to unity, while the remaining displacements'and the s t ress  r e -  

sultants a r e  set to zero. The corresponding values of the harmonics 

f (j)  of the s t ress  resultants at the j edge a r e  represented by the fn) th 

matrix x whereas the values of the harmonics 6 (j) of the displacements 1 '  
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Column Number 

Unit 
Displacements 

Applied 

0 

Unit 
Forces 

Applied 

0 

Distributed Load 
lipplied (10 possible 

loading cases ) 

- .......... .......... .......... .......... - .I 

- L. .......... .......... .......... .......... 

L 

Figure 1 5  Calculations for  Influence Coefficient and Load Coefficient Matrices 

85 



a r e  represented by the matrix kr In columns 5 through 8, one of the 

s t ress  resultants a t  the i edge is successively set  to unity, while the 

1' 
th 

remaining s t ress  resultants and all the displacements a r e  set  to zero. 

The corresponding values of the harmonics f(l")(j) of the s t ress  resultakts 

at the j th edge a r e  represented by the matrix x,, whereas the values of the 
~ 

(n 1 
harmonics 6 ( j )  of the displacements a r e  represented by the matrix . 9 2  
In columns 9 to 18, the s t ress  resultants and displacements at the ith edge 

(n) 
a r e  all set to zero. 

sultants at the j 

The values of the harmonics f ( j )  of the s t ress  re -  

edge due t o  the external distributed loads acting along th 

the segment of the shell a r e  represented by the 3 

values of the harmonics 8(n)(j) of the displacements a r e  represented by the 

matrix &L3. Notice, that as many loading conditions as desired can be 

considered. In Fig. 15, ten loading columns a r e  shown. The matrices 

matrix, whereas the 3 

xl , x2 x3, gl , g2, g3 a r e  referred to as the influence coefficient 

matrices. Each of the eight different edge conditions, and the ten load- 

ing conditions produce a column in the appropriate influence coefficient 

matrice s. 

Fig. 15 is applicable to a single harmonic of a linear problem or to 

a nonlinear problem with an axisymmetric load [ 1071. The nonlinear 

problem associated with unsymmetric loading is more complex. Fig. 

16 represents a schematic diagram for establishing the influence coef- 

ficient matrices for nonlinear problems entailing, for example, the coupl- 

ing of harmonics n and n'. The initial matrices for the values of the func- 

tions at  edge i (the initial conditions) and the influence coefficient matrices 
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I Run Number 1 2 3 4  

Jnit (n) Unit (n)  
Displacements Forces 
4pplied at (i) Applied at (i) 

5 6 7 8  g 10 11 12 1 3  

0 

1 4  

0 

0 

1 4  1 5  1 6  

~ 

1 
1 
1 

Displacements Forces 
Applied at (i) Applied at (i) 

Unit (n ' )  Unit ( n o  Dist. Loads 
Zero IC 
NL b o b .  

O !  

O I  

I 4  ~ 

O 1  

[.I 
[.I 
i.1 

Figure 16 Calculations with Interaction 
QV 



are  now 16 x 16 matrices. 

harmonic coupling. I€ there were no coupling, these matrices would be null matric 

The differential equations for the nonlinear pr[oblem may be linearize 

In Fig. 16, the s ta r  matrices denote the effects oll 

by the Newtonian method. 

A Y a r e  linearized by dropping the nonlinear terms in 

(As discussed in Chapter 2 ,  the equations in 

A Y  , and by using 

the previous values of Y in the product terms (Y) ( AY)). Thus, syper- 

position is possible for  both the linear and the nonlinear problem. Con- 

sequently, the influence coefficients may be employed to yield the s t ress  

resultants and the displacements at the j 

resultants and displacements a t  the i edge. Using Equations (3- l) ,  to 

(3-4) , the s t ress  resultants and displacements may be expressed directly 

in global coordinates as 

th edge in terms of the actual s t ress  

th 

where ( 1 )  is a scaling factor for the load. 

in establishingx and g3 a r e  the actual loadings considered, then the 

loading vector (1 } is a unit vector. Solving Equation (3-8)  for vector 

If the loading cases employed 

3 

{f(i)}, and employing Equations (3-3)  and (3 -1 )  to convert {6(i)} and {f(i)} 

into global coordinates, we obtain 

{F(i)} = [IFT] [kc,]-’ {dj) } - [gl] [IDT]T{4i)} - [g3] (1 (3-9)  
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Using Equations (3- 1) and (3-3) t o  convert the vectors {6(i)  1 and {f(j)} in 

Equation (3-7) into global coordinates, and substituting in  the resulting 

equation, the values of {F(i)} from Equation? (3-9), we get 

(3- 10) 

Equations (3-9) qnd (3- 10) may be combined in the form 

where, referring t o  Equations (3-9) and (3- lo ) ,  we may write the stiffness 

and load matrices in a combined form: 

[k: L]zl.. . . :. . . . . . : . . . . . . . 
I I 

: I4 

: xz 
... 6 
. 
.il . : x3 i: * ...... ~ o - ~ o ~  0 .. 

:P2 : o  . .... ...... . 
1 0  : o : q  * P  
L *  * -I 

' 0  : o  I4 : 
-g: JDT *.-%I, T.* * 

, . . . . . . . . 
: 7 A. ,............ 

I - 

I T IDT : 0 : 0 
t . . . . .  * .... '... I 
0 .  : '4 I ( 3 - 1 1 )  

I ............. 
0 : 0 : q  

- P  

Equation (3-11) may be verified by carrying out the matrix multiplication 

and comparing the resulting matrix with Equations (3-9) and (3-10). As 

evident from Equation (3- 11) , in order to  compute the stiffness matrix [k] 
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and the load matrix [L], it is necessary to invert only the v2 matrir. 

(g2 is a 4x4 matrix in uncoupled cases, 4N x 4Nin the unsymmetrically 

loaded nonlinear case. ) 

In other numerical integration methods, [ 97, 981 the influence 

coefficient matrices 2. and 9 a r e  used directly instead of calculating 

the stiffness matrices of the shell segment. There are,  however, many 

1 1 

significant advantages in employing the direct stiffness technique. 

The procedure, employed in this investigation for the solution of 

the boundary value problem, subsequent to the formulation of the stiffness 

matrices of the shell segments, is exactly that employed in the finite ele- 

ment techniques. Thus, all the matrix manipulation methods developed 

for  finite element solutions may be utilized in the present method, a s  for 

example, those for large scale matrix inversion, using packing techniques, 

or taking advantage of banding, etc. Moreover, the direct stiffness method 

can be applied without modification to arbitrari ly branched shells, as well 

as to shells with discontinuos changes in meridian slope. 

other techniques [ 97, 981 are more efficiently utilized with the use of 

Gaussian elimination procedures, such as Potters' [ 43 procedure. 

Finally, the 

These 

methods however, m y  be prone occasionally to e r r o r  accumulation in the 

calculation sequence [ 1321, whereas the Choleski method and the transfer 

matrix method utilized herein, tend to involve negligible e r r o r  accumulatior 

Therefore, many finite difference schemes, utilizing some form of the 

Gaussian elimination technique require double precision arithmetiy . 



ProDerties of the Stiffness M a t r i x m :  In the solution' of shell problems, 

for self-checking of the arithmetic , it is convenient to utilize the fully 
A 

symmetric matrix [k] , defined by 

and therefore, 

A 
[L]: [L] (3-13)  

so that 

E] = G] [A] t (3 (3-14)  

where 

A 

A 

F is measured in units of force/unit length, and F is measured in units 

of force. 

In the case of the stiffness matrix [k], for either linear problems 

or nonlinear problems with axisymmetric loading, the matrix required to 

convert [k] into the symmetric matrix [k] may be obtained by inspection. 

This is not the case, however, for a nonlinear problem with unsymmetric 
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loading. There is no apriori reason in this case to assume that the stiff-  

ness matrix of the coupled harmonics can be converted to symmetric form 

inasmuch as this matrix relates a combination of Ramponics of forces and 

displacements, Thus, the existence of a symmetric matrix must be proven, 

Consider, for instance, the case wherein the zeroth harmonic is coupled 

to any other harmonic, for example the Nth harmonic. For  this case, the 
1 1 .  

force-displacement relations may be written svmbolically as : 

For the shells under consideration, in the absence of body forces, the 

Betti -Rayleigh reciprocal relations [la31 a r e  (where the primed quantities 

belong to one system of forces and displacements, and the unprimed t o  

another) : 

2a 2Tt s F(0) (8) d 0 = F(8) A (e) d 0 (3-  16) 
0 0 

Inasmuch as  we assume that the zero harmonic i s  coupled only with the 

Nth harmonic, we may write 

Substituting Equations (3-  17a) into Equations (3- 16) we obtain 



2Tr 

J(F 
0 

. (0) + F ( N ) ~ ~ ~ N O )  (d(') t d(N)cos Ne) d 0 = 

2Tr 

(F1(0) t F1 (N)cos N 9) (A'') t A(N)cos N 0 ) d 0 
0 

Integrating we obtain 

(3- 17b) 

The force-displacement relations fo r  the two sets of harmonic amplitudes, 

on the basis of Equation (3-15) a r e  given by 

Substituting the above relations into Equation (3-17b) we get 

This relation is valid if 

(3-18) 2 k  (0, N) - - k(N, 0) 

thus indicating that the stiffness matrix of Equation (3-15) is unsymmetric. 

However, it is relatively simple to form a matrix which can transform the 
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stiffness matrix of the coupled harmonics into symmetric form. 

each individual diagonal block (k 

Note, that 

(NyN)) of the stiffness matrix ('9 or k 

for the coupled harmonics is not a symmetric matrix, but may be converted 

readily into a symmetric matrix (nk(O' or  "k.N' N)) by Equation (3-12) . Thus 

in this specific case, the appropriate symmetric matrix corresponding to Equation 

(3-15) is given by 

a 0 2' 2.. S O  

0 :  1 
J 

. \  
(3- 19) 

The following notation is introduced in order to identify data in 

subsequent discussions and calculations: 

(3-20) 

where: 

th 
s indicates the s segment of the shell connecting joints i and j, 

n indicates the Fourier harmonic, ( For coupled harmonic problems, 
the matrix superscript would be (n, n',n")where n, n,' n" a r e  the 
coupled harmonics, ) 

Structure Matrices and Stiffness Analysis: 

[ 1341 is employed in  calculating the interaction of the segments comprising 

The direct stiffness method 

the shell structure. To increase the capacity of the program, the shell segments 

94 



region *+ 7 

Line Loading 
I 
I I 

Figure 17. Example of Region Topology 
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w i l l  first be coupled i n t o  regions using a Guyan cl523 reduction procedure. 

regions are defined as singly-connected she l l s ,w i th  no in te rna l  concentrated l i n e  

These 

loadings (Figure 17). The next s t e p  i s  t o  construct the region s t i f f n e s s  matrix 

E] and the matrix of fixed-end forces [c] . This requires s p l i t t i n g  each 
h 

segments 

inser t ing the portions i n t o  the region s t i f fnes s  matrix i n  accordance w i t h  the 

topological arrangement. 

where P is the number of individual loadings considered separately. (For nonlinear 

cases, the s t i f f n e s s  matrix changes with the load, consequently, only one loading 

case can be considered a t  a time. 

axisymmetric loading, and 4Nx1 f o r  the unsymmetric coupled problem.) 

addition t o  the geometric description of each segment, i ts  posit ion i n  the assembly 

must be specified.  

The sth segment is said t o  connect the ith and jth jo in ts .  

jo in ts ,  since d i rec t ion  of increasing coordinate within the segment must be from i 

t o  j) .  To allow f o r  the poss ib i l i t y  of discontinuous centerlines within a region, 

kinematic l inks  must be included. 

displacements across a discontinuity.  

be formed. 

[k] matrix i n t o  i t s  four  4x4 matrices ( f o r  coupled problems ~ N x ~ N ) ,  and 

A 
The [L] matrix is s imilar ly  s p l i t  i n to  two 4Xe matrices, 

Thus, the s p l i t  load matrices are 4x1 f o r  

Thus, i n  

To t h i s  end, a l l  segments begin ( i )  and end ( j )  a t  a jo in t .  

t h  (Not the jth and i 

These l inks  are r i g i d  pieces which relate 

Thus a kinematic l i n k  matrix [SKL] must a l so  

Due t o  the topology and line-load requirements f o r  regions, the equationi 

of the coupled segments w i l l  be the following: 

I 
I 

K1l I K12 

(8x8) I , 
I 

. K21 I K22 

(3-21) 
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where 

SKL 

= SKL I ,  
T 

and where i R ,  j R  refer t o  the region i n i t i a l  and f i n a l  points, and the [A], [K'f ,  

are the deflection, s t i f fness ,  and load matrices of in te rna l  segments. 

If there are no in te rna l  kinematic l inks,  

Par t i t ioning Equation (3-21) w i l l  yield: 

KL] w i l l  be an ident i ty  matrix. 

Solving Equation (3-22b) f o r  CA I and subst i tut ing in to  Equation (3-22a) yields: 

8xP 8x8 8xP 8xP 
where 

(3-232 

ECI = P;I - ( [C21EK221 A L2-J ) 
The next step i s  t o  construct the total st ructure  s t i f fnes s  matrix p; ] and the 

A 

total st ructure  load matrix [ L  i]  . This  requires the s p l i t t i n g  of the s t i f fnes s  
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0 
matrix [%] of each region in to  i t s  four 4x4 component matrices ( fo r  coupled 

> ., 
problems 4Nx4N), and inser t ing the portions in to  the t o t a l  s t i f fnes s  matrix, i n  

accordance with the topological arrangement of the structure.  

similarly s p l i t  i n to  two 4 s  matrices, where P is the number of individual loadings 

considered separately. (For nonlinear cases, the stiffness matrix changes with the 

load, consequently, only one loading case can b e  considered a t  a t i m e .  

s p l i t  load matrices are 4x1 f o r  axisymmetric loading, and 4Nxl fo r  the unsyrnmetric 

A. 
The [L&~atrix is 

Thus the 

coupled problem). Therefore, i n  addition t o  the geometric description of each 

region, i t s  posit ion i n  the assembly must be specified. The i n i t i a l  point of a l l  

regions w i l l  be denoted by (i) whereas the end point w i l l  be denoted by ( j ) .  

Inasmuchas there are four degrees of freedom a t  each jo in t ,  f o r  a s h e l l  w i t h  M 

jo in ts  the t o t a l  s t i f fnes s  matrix i s  4Mx4M (4MJJx4NN f o r  coupled problems). 

using equilibrium re la t ions  fo r  a l l  the joints ,  we can form the following 

Hence 

equation 

A /--- 

s 

The subscript T denotes a matrix which 

(3-24) ~ 

includes texms for all the joints. - 
Equation (3-24 ) characterizes the structure without taking into account any 

external boundary conditions. 

load cases, the mah ix  [K] 

For  axisyrm-netric and antisymmetric (n=O, 1) 
m 

can be singular. This may be physicallyin- T 

terpreted, as  follows. 

s t ress  resultants from the displacements; , thus? the inverse of t.he stiff- , I  

The stiffpess matrix permits calculation, of the 

ness matrix would relate displacements to the s t ress  resultants. The 
4 I 

displacements, however, a re  not unique inasmuch as one valid solution may 

differ from another by rigid body motion. Hence, it can not be anticipated 



that a relationship may be established relating a l l  the valid displacement 

fields to the unique set  of s t ress  resultants; indicating that the total stiff- 

ness matrix is not invertible, that is, it is singular, However, the total 

stiffness matrix of a complete shell of revolution for harmonics other than 

nhO, 1 need not be singular. For harmonics greater than unity, the s t ress  

resultant harmonics a r e  self-equilibrating. Moreover, since the displace- 

ments a r e  of the same harmonic order, rigid-body motiorr cannot exist. 

h 
Since the form of the [ K] matrix depends upon the topology 

of the regions , there is some leeway as to the distribution of the zero 

terms within this matrix. This may be accomplished by utilizing various 

numbering techniques for the regiom of the structure. Several tech- 

niques may be employed to form the total structure stiffness matrix 

rendering it amenable to  facile operation. One technique is t o  form a 

bandedmatrix. 

tank, so as  to produce a banded matrix, as shown in Figure 18. Operations 

with a banded matrix a r e  more efficient, consume less time and less com- 

The numbering for topology of a typical common bulkhead 

puter core storage. Another technique presented in Reference 135 does not 

employ banding but is also critically dependent upon judicious topology number - 
ing. 

the stiffness matrix'may be compacted. 

eliminating the large amount of zeroes in the matrix from the computer 

For cases where neither of the aforementioned techniques a r e  feasible, 

This may be accomplished by 

storage. 

may result in operational simplification. 

This technique in addition to minimizing computer core storage, 
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Figure 18 Sample Structural Numbering for 
100 

PENTA - BLOCK DIAGONAL 
STIFFNESS MATRIX 

Diagonalization of Stiffness Matrix 



Reduced Stiffness: The stiffness matrix established previously must now 

be altered in order to take into account the existence of ring reinforcement, 

possible attachment of the shell to other structures, as  well as to inhibit 

rigid body motion and satisfy specific support conditions. 

In the case of ring-stiffened shells, the ring reinforcing matrices 

established in Appendix B, must be stacked in the stiffness matrix in ac- 

cordance with the topology of the ring stiffeners. 

If the shell of revolution under consideration is  attached to  other 

structures, the stiffness matrix should be modified to take into account the 

effect of these structures. 

support, such as a ,soil foundation o r  another structure, the stiffness matrix 

of that support can be 

For  example, if the shell rests on an elastic 
1 

I 

- 
1 where im denotes the joint of the shell at the elastic support. The stiff-  

ness '[KA] should then be stacked into the total shell stiffness matrix 

[K] 
f i  

at the location corresponding to joint m. The aforementioned tech- 

nique may also be employed in solving problems associated with non- 

axisymmetric structures 11 11 being connected to the shell of revolution. 

In the actual shell structure the displacements and rotations of 

the joints of the segments into which the shell must be subdivided, may 

assume specified values, or  may be constrained externally. The number 

of displacements which a r e  not specified will be referred to as the degrees 

of freedom of the shell structure. The total 

ponents specified at the various joints in the 
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structure, will be referred 



to as the number of boundary conditions. In order to alter (reduce) the total 

the stiffness matrix to take into account the effect of the baundary conditions, 

a boundary condition matrix [BC] must be established. The formulation of 

the matrix may be illustrated by referring to the shell of revolution shown 

in Fig. 19. 

For example, consider the shell of revolution shown in Figure lga, 

The geometry of this shell suggests the subdivision of the shell into the 4 

segments shown in Fig. 19b.. 

2 - 3  may be considered as an equivalent ring stiffener, and its stiffness 

matrix may be computed, and stacked into the total stiffness matrix of 

the shell according to its topology, discussed previously. However, the 

Notice, that the segment between joints 

length of the segment 2 - 3  may be taken as  small as desired, whereas the 

lengths of the adjacent segments must increase appropriately to close the 

gap. In the limit, when the length becomes very small, the stiffness matrix 

of segment 2 - 3 will become a null'rmatrix. 

Such a segment will be referred to  as a kinematic l ink This link 

will affect only the boundary conditions of the adjacent segments, The use 

of a kinematic link where permissible, in lieu of an equivaleqt ring stiffener 

of chosen finite dimensions, will eliminate ihe need f o r  computing the stiff- 

ness matrix of this ring. In the example structure, the [BC] matrix in this 

a rea  wi l l  reflect only the kinematic relations between joints 2 and 3. 

From Fig. 19b, it is evident that joint 1 is connected to a heavy 

boss. Thus, we may assume that this joint may move solely in the Z and 8 

(tangential) directions. As an alternative, it may be assumed the joint 1 
lCX2 



I 

I 

Figure 19a Shell  Structure 
I 

Figure 19b Idealization 

Figure 19 Shel l  Structure and Ideal izat ion 
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is connected to an elastic support. 

of the support may be appropridtely inserted in the total shell stiffness matrix. 

Thbn, in the formulation of the boundary condition matrix, j o h t  1 shoul 

considered totally unrestrained. * 

Referring to Fig. lgb, it is apparent that joint 4 is completely 

In this case, the stiffness characteristics 

_I 

, , ‘A 

unrestrained, 

Therefore, the [BC] makrix will not impose any constraint on this joint. 

This joint is merely a point wherein the shell geometry changes. 
I 

Joint 5 (Fig. 19 b) is provided with an external membrane support. 

Inasmuch as  the s t ress  resultants and displacements at the joints of the 

structure a re  specified in global coordinates, the [BC] matrix will contain 

a trigonometric coordinate transformation for  joint 5. 

Thus, the total displacement matrix may be expressed in terms of the 

matrjx containing only the actually unspecified (unknown) displacements, 

For  the example structure of Figure 19, Equation (3-26) is given by: 

104 



1 

1 

-cos 

-sin 



The following items should be noted re la t ive  t o  Equation 

row i n  the[BC] matrix f o r  each displacement component or 

(fixed). There are no components f o r  the dependent j o i n t  

(3-27). h e r e  is a blank 

rotat ion specified as zero 

3 In the matrix [AIF. The 

k inemt ic  r e l a t ions i a r  th i s  j o in t  are given i n  the [X] matrix. 

component A 

A c  ( 5 )  contributes t o  both A, ( 5 )  and AB ( 5 ) .  

The meridional 

( 5 )  does not appear since it is fixed, but the perpendicular component 
cp 

By using the def ini t ion of work, it m y  b'e s h m  that the stress resul tants  a t  

the jo in t s  i n  the directions of the unconstrained displacement components may be 

expressed i n  terms of the t o t a l  stress resul tants  a t  the joints .  This relationship 

is 

Substi tuting Equations (3-24) and (3-26) in to  Equation (3-28), we obtain 

- A  

[ F IF = [ BC 1'' [ K-1, [BG] [A], t [BCI'I' [LIT 

Rewriting Equation (3-29) we have 

A A b 

IF]F = ial, ' 1, 

Inverting Equation (3-301, we get 

where 

(3- 33 1 

Thus, the total displacement solution for the joints of the structure may 

be obtained by using Equations (3-32 ) and (3-261). 
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Thus for the region ends, combining Equations (3-26) and (3-32)  

~ {AR} = [BC1 O F  ({?F - P t F )  

anp i n  the interior of each region, for each segment 

Final Stress Distribution: As noted above, subsequent t o  obtaining the 

end displacement at any segment, we convert to local coor'dinates,' using 

Equation (3- 3) 

(3-34) 

(3-35) 

The s t ress  resultants at every segment-edge a r e  established in local 

coordinates by combining Equations (3- 1) , ( 3 - 9 )  , and (3 -  11) 

The s t ress  resultants in any elastic restraints may be established from 

Equation (3-25). 

Subsequent to obtaining the s t ress  resultant and displacement 

distribution at the edges of all the segments of the structure, the s t ress  

resultant and the displacement distribution within each segment must be 

established. This is necegsary, inasmuch as in a shell structure having 

a complex shell geometry, the maximum values of the s t ress  resultants 

and/or displacements may not occur at the edges of the segments. Finally, 

it is essential to verify that the established solution satisfies the continuity 

conditions at  all the joiuts of the segments, thus insuring that the e r ro r s  

induced during the integration process did not accumulate. 
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The establishment of the s t ress  resultant and displacement dis - 
tribution throughout each segment of the shell, and the checking of the es -  

tablished solutions, may be accomplished simultaneously by an integration 

throughout all  the segments of the shell, as described previously in this 

chapter. This final integration, however, does not i i s e  unit vectors 

described earlier as the initial conditions at  joint i ,  but rather the s t ress  

resultant and displacement vectors obtained f rom Equations (3-3')  and (3-36 ). 

From this integration the s t ress  resultants and displacements of the j 

end a r e  obtained, as well as  their distribution throughout the segments. 

The accuracy of the solution obtairied by the numerical integration may be 

established by comparing the s t ress  resultants and displacemnts a t  the J 

. I  

th 

. th 

end of every segment with their counterparts at the ith end (same structural 
' 

point), of tkie corresponding adjacent segments. 

It should be noted that for nonlinear problems the method of 

analysis presented in this chapter must be repeated several times for  every 

load increment, a s  outlined in Chapter 2. A f t e r  each t r ia l  solution the nor- 

linear terms in the Newton-Raphson procedure a r e  reevaluated using values 

obtained in the previous t r ia l  and a check for convergence at the current 

load level is made. 

cedure repeated (see Chapter 2). 

Then the load can be incremented again and the pro- 

While the current formulation is strictly valid only fo r  shells of 

revolution, Reference 136 has shown how the concepts involved in this 

formulation might be extended to obtain approximate analyses of non- 

circular prismatic shells. 
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CHAPTER 4 

CLASSICAL BUCKLING LOADS FOR SHELLS OF REVOLUTION 

SUBJECTED TO STATIC LOADING 

Various methods were presented in the preceding chapters for solv- 

ing linear and nonlinear static problems for shells of revolution subjected to 

symmetric and unsyrnmetric loadings. In this chapter, methods for estab- 
lishing the classical buckling load of shells of revolution will be presented. 

The classical buckling load is the load required to bring the idealized "per- 

€ect" shell to a bifurcation of its equilibrium (prebuckled) state. 
we shall not be dzrectly concerned either w i t h  the postbuckling behavior [159] or  

the effect of i n i t i a l  imperfections on the buckling loads and modes [160]. 

That is, 

A method was presented in Chapter 2, f o r  establishing the maximum 

value of the load wherein the prebuckling deformation of the shell corre- 
sponding to the applied load becomes unstable. Increments of the load were 

applied to the shell, and using Newton's method, the nonlinear response of 

the shell corresponding to each load increment was established. 

mum value of the load for which the prebuckling deformation of the shell 

becomes unstable was established a s  the point a t  which the solution ceased 
to converge. 
has other disadvantages. 

only the n=O axisymmetric buckling l o d  may be established with this technique 

wi thout  the use of "load perturbations". 

cases of unsymmetric loading, the actual buckling mode my be established w i t h  the 

The maxi- 

In addition to the lengthy computer time involved, this technique 

For example, in the case of axisymmetric loading, 

As w i l l  be discussed subsequently, i n  most 

method discussed i n  Chapter 2. The pr incipal  difficulty i n  t h i s  case is the 

extensive computer time required for the analysis, 

It should be noted, however, that the above method my be more useful i n  

predicting shell  imperfection sensitivity. I n  the case of axisymmetric imperfect- 

ions f o r  a spherical cap, t h i s  w a s  demonstrated i n  Reference 158, wherein only the 

axisymmetric buckling mode was investigated. However, i n  combination w i t h  the 

"load perturbation" technique, this  procedure can logically be extened t o  study 

unsymmetric modes. I n  order t o  study the effects of unsymmetric imperfections, a 
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coupled harmonic geometric and load formulation would be necessary. 

the procedure is  that no specialized imperfection analysis, other than the 

definition of the stress-free geometry for the most significant imperfection, is 

necessary. The procedure is also independent of imperfection magnitude. Given a 

general nonlinear equilibrium program, imperfection sensitivity m y  be investigated 

by merely adding another geometry t o  the program library. 

The beauty of 

Derivation of the Stability Equations: The stability equations for a shell of 
revolution can be obtained by the energy methods outlined in Reference 100. 

However, in this investigatiox, the procedure presented in Reference 137 
will be employed. 

(1-27, 28, 29) presented in Chapter 1 for homogeneous orthotropic shells, 

will be denoted by Y, and will be decomposed into two components 

The typical variables in the general nonlinear Equations 

Y = Y  t Y B  P 
Yp represents the value of the variable a t  the prebuckled equilibrium state. 

YB represents the change due to the buckling. 

satisfy the general nonlinear Equations (1-27,28,29). Substituting Equation 
(4-1) into Equations (1-27 , 28,Z9) a set of nonlinear equations involving Yp 
and YB a r e  obtained. 

the above mentioned set  by setting YB = 0. Subtracting the one se t  from the 
other, and neglecting terms nonlinear in  YB, the following stability equations 

a r e  obtained (For convenience of presentation the subscript B is omitted in 

all  terms except for the "load" term. ): 

The variables Y and Yp must 

The set  of prebuckling equations may be obtained from 
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where 

(4- 3) 

) - F  W tF W 
e c p  e p e  

Inasmuchas the variables Y and Yp satisfy the given boundary conditions 

at  the ends of the shell, the variables Y 

conditions. 

will satisfy homogeneous boundary B 

If reinforced o r  laminated shells a r e  to be analyzed, Equation (4-1) 

must be substituted into Equations (1-31) o r  (1-32) instead of the corre- 

sponding equations in sets (1-28, 29). 

ment, the following equations must replace the corresponding equations 

in the set  (4-2). 

Thus, f o r  ring-stringer reinforce- 
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equations in the s e t  (4-2), 
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Prior  to presenting solutions *to these equations, it must be decided how 

the prebuckled state will be established. In most earlier buckling analyses, 

this state was established on the basis of the linear membrane theory. This 

procedure yields accurate results for some shell geometries under certain 

boundary and loading conditions, and simplifies the analysis greatly. Re- 

cently, with the introduction of automated numerical analyses, the pre- 

buckled state has been established on the basis of the linear bending theory, 

and even nonlinear bending theory. 

fo r  a general conclusion a s  to when it is necessary to analyze the pre- 

buckled state by a non-linear analysis. 

of shell problems have been solved where nonlinear buckling effects have 

been found to be significant, such as  in the c m e  of eccentrically merid- 

However, there is not sufficient evidence 

In the l a s t  few years, a number 

ionally stiffened spherical caps [29, 163- 1653. 

stability computer programs [28, 117, 1381 have 

bending analysis for the prebuckling state. 

Stability Under Axisymmetric Loading: 

Most of the general shell 

options for using nonlinear 

A s  in the nonlinear static 

analysis, considered in Chapters 2 and 3, the stability analysis of shells 

of revolution will  be different if the loading is axisymmetric or  unsymmetric. 

In the case of axisymmetric loading, the terms in Equations (4-2) having a 

P subscript (prebuckling terms), and the load terms in Equations (4-3) a r e  

zeroth harmonic amplitudes (invariant with e). However, the terms which 

donothave a P subscript (buckling terms), mustbe expressed in terms of the 

Fourier series (2-2). 

metric loads, the primed and the double-primed harmonic amplitudes, generally 

will be coupled. 

It shouldbe noted, thatin the case of buckling under axisym- 

However, each pair of harmonic amplitudes (the primed 



and the double primed) will not be coupled with other pairs and, there- 

fore, each pair may be considered separately. 

cp , c p  = -2Tcpe I (n) - coscp 
T1 e (n) 

- 
2 

(n) cosy 
r r 
0 0 r 

0 
'1 
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As evident by the presence of the dovble primed terms in the above.equations, 

the primed and double primed terms a re  coupled. 

may be obtained involving primarily double primed harmonic amplitudes, with 

only a few single primed cross-coupling terms. From Equations (4-6, 7), it is 

A similar set  of equations 

apparent that for certain load conditions (axisymmetric non-torsional loads), 

the pairs of harmonic amplitudes (primed and double primed) may be uncoupled. 

Thus, for axisymmetric non-torsional loads, the buckling modes can be de- 

scribed by the half Fourier series expansions in Equations (2-2). 

In establishing the buckling modes of shells subjected to torsional loads, 

in addition to other loads, the set  of Equations (4-6,7) must be solved simul- 

taneously with the set  of equations for the double-primed amplitudes, pre- 

viously discussed. Equations (4-6,7) a r e  valid for orthotropic homogeneous 

shells. If reinforced o r  laminated shells are to be analyzed, Equations (4-4) 

o r  (4-5), respectively, must be employed instead of the corresponding equa- 

tions in the sets (4-6, 7). 

It is apparent from Equations (4-6, 7) that for shells subjected to axisym- 

metric loading, buckled shapes may correspond to any harmonic ( n =  0, 1 , 2 * * * ) .  

Thus, the buckling loads corresponding to different harmonic buckled shapes 

must be established until the critical (minimum) load is determined. 
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Stability Under Unsy-mmetric Loading: The appropriate equations for 

the case of unsymxnetric loading a r e  analogous to the equations of the non- 

linear unsymmetric static problem presented in Chapter 2. Thus, they 

a r e  more complex than Equations (4-6,7), for the case of symmetric load- 

ing. 

in Fourier series (see Equations (2-1,2)) the resulting equations involve 

product terms (see Equations (2-6a, b)). Thus, by referring to Chapter 

2, the general equations for the stability of homogeneous orthotropic shells 

of revolution under unsymmetric load may be written as  

For  unsymmetric loading, when the loads and displacements a r e  expanded 

(n) NI (n) M1 (n) 
(n) COST 

2 - 2nM '*(n)coscp - N;(n)sinp ep  + n2 0 

0 
2 

- 
r 
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r1 r r 
0 0 
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R in) sincp t sincp} -!- (%P ep  
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'(n) COST (n) sincp t 2 n W  

where, as in Equations (2-8), the above equations have been obtained by utili- 

zing only the half of the series (2-1) with primed amplitudes. A similar set  of 

equations may be obtained by u s k g  the half of the series (2-1) with the double 
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primed amplitudes. In Equations (4-8), the nonlinear terms involve cou- 

' pling of the primed and double primed amplitudes, as well a s  the harmonics. 

The amplitudes of the harmonics in the nonlinear terms with a subscript P 

represent the effect of the prebuckled state. The nonlinear te rms  in Equations 

(4-8) may be obtained from Equations (2-9) with the appropriate addition 

of the P subscript. The buckling "load" terms (feB (n) ,fqB (4 , fcB  (n)) are 

obtained from Equations (2-9) by omitting the first single term (Fe (4 , 

FcP ' 6 <  (n) F (n)). If reinforced or  laminated shells a r e  to be analyzed, Equa- 

tions (4-4) o r  (4-5) should be used in place df their counterparts in Equa- 

tions (4-8). 

Stabilitv Conside r a w  : In Chapter 2, i twas noted that the resulting 

equations couldbe significantly simplified if a line of syrnmetry existed in the 

loading pattern. This was accomplished inasmuchas, in this case, the resulting 

deformationand s t ress  patternis symmetric with respect to this line of symmetry. 

In the case of buckling, if a line of symmetry exists in the loading pattern, 

and consequenfly in the prebuckling deformation and s t ress  state, the load- 

ing pattern and the prebuckling deformation and s t ress  state may be repre- 

sented by only half of the Fourier series expansions. However, this does 

not denote that the buckling deformation shape may be represented by the 

same half-series expansions. Thus, the f u l l  sei-ies expansions must be 

used resulting in two different sets of equations corresponding to buckling 

modes "in-phase'' and "out-of-phase" with the applied load. 

the case for axisymmetric loading (no torsional loads). However, since 

in that case, each harmonic buckling shape could be investigated separately, 

the two sets of equations represent buckling shapes differing only by a rigid 

body motion. 

This was also 

Thus, only one set  of equations was sufficient fo r  the analysis. 

If the shell was subjected to torsional loads, in addition to other axisymmetric 
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loads, the resulting sets of equations will be cross-coupled and must 

be solved simultaneously for each harmonic buckling mode. 

unsymmetric loading with a line of symmetry, the prebuckling harmonic 

amplitudes (e. g. primed) a r e  coupled with the buckling harmonic amplitudes 

(primed _. or  double-primed). 

buckling loads corresponding to in-phase o r  out-of-phase buckling shapes. 

In Figure 2 0 ,  the-axisymmetric load versus the resa t ing  deformation 

is plotted, whereas the unsyrnmetric load versus the resulting deformation 

In the case of 

Thus, the two sets of equations yield different 

is  plotted in Figure 21. 

described in Chapter 2 would proceed along line OA B C D which corre- 

sponds to the axisymmetric nonlinear static analysis. 

a s  the buckling load referred to by Thompson [139] as  the "snapping load". 

However, the actual (lowest) buckling load may correspond to a non-axisym- 

metric buckling configuration. (As shown in Fig. 20, point A , obtained on 

the basis of the stability analysis to be presented in this chapter, f o r  the 

n = nl buckling configuration may correspond to a buckling load lower 

than that corresponding to point D . ) 
figuration corresponding to an  assumed value n, the solution to be presented 

in this chapter will yield a buckling load (points A o r  B o r  C ), whereas, 

the metliod presented in Chapter 2 wi l l  yield only point D corresponding to 

n = 0. That is, the solution to be presented in this chapter permits a buck- 

Under axisymmetric loading, the %ration technique 
1 1 1 1  

I 
Point D is established 

I 

t 

I 
Thus, for any assumed buckling con- 

1 1 1 

I 

ling configuration described by harmonics different from n = 0 (describing 

the applied loads), whereas, the solution presented in Chapter 2 yields an 

n=O buckling configuration only, without resorting t o  "load perturbations". 

From experimental evidence, however the buckling configuration of shells of 

* 
Notice, that in the case of axisymmetric loading, as discussed previously, 
the harmonics uncouple; consequently, the buckling configuration will corre- 
spond only to one harmonic. 

122 



axi symmetric 
l inear  
prebuckling 
analysis 

nonlinear 

0 Deformation 

Figure 2' Shell Stability-Axisymmetric Load 
123 



out-of -phase 

I 

out-of-phase 
with load- 

. .  

out -of -phase 
with load 

in-phase 
with load 

;ion 

. .  

Figure 21 Shell Stability-Unsymmetric Load 
124 



revolution subjected to symmetric loads is not always described by the same 

harmonic as the applied loads. The two methods for buckling analysis t o  be 

discussed i n  t h i s  chapter my be employed t o  establish buckling loads f o r  any 

buckling mode. That; is, referring t o  Fig. 20, t o  establish points A ' ,  B ' ,  C', D' 

if the prebuckling s ta te  is described by the nonlinear bending theory, or  points 

A, B, C, D if the prebuckling state is described by the linear bending theory. 

I 
Under unsymmetric loading, (see Fig. 2X) point A may be established 

by the iteration technique described in Chapter 2. Note, that even if the 

applied load was described only by a few Fourier harmonic amplitudes, the 

iteration procedure would eventually involve al l  the harmonic amplitudes 

of the s t ress  resultants and displacements. In the methods to be described 

in this chapter, i f  a nonlinear prebuckling state is to be considered, all the 

harmonics couple, and point A' is established. If the prebuckled state i s  

analyzed by linear bending theory, several buckling configurations de scribed 

by different families of harmonics constitute mathematically acceptable solu- 

tions. The loads corresponding to these configurations a re  denoted in Fig. 

21. by points A, B, C, D, E, F. 

subsequently. The buckled configuration corresponding to point A is 

These families of harmonics will be described 
I 

described by all the harmonic terms, whereas, the buckling configurations 

corresponding to points A, B, D a re  described by groups of harmonics each 

of which is contained in  the terms describing the configuration 

to point A . 
mations of different order of accuracy to the critical buckling load defined 

corresponding 
I 

Thus, the loads corresponding to points A, B, D wi l l  be approxi- 

1 

by point A , rather than buckling loads corresponding to different buckling 



configurations a s  in  the case of a shell under axisyrnmetric loading. 

1 

The load corresponding to point A may be obtained by incremental 

Newtonian iteration, using a larger  number of harmonic terms for each 

successive load increment. Thus, the analysis is lengthy. Moreover, in 

the analysis, the Fourier ser ies  describing the buckling configuration must 

be truncated, consequently the load corresponding to point A may be es -  

tablished approximately. 

eigenvalue analysis (for eachpoint). In this analysis, the Fourier series harmonic 

families describing the buckling configurations must be trun-cated. 

1 

Points A, B, D, however, may be obtained by one 

If a 

dominant harmonic group exists in the description of the actual buckling 

shape, and the same number of Fourier terms is retained in the linear 

and non-linear analyses, the buckling load obtained on the basis of the 

linear analysis (point A) may actually be closer to the true bucklingloadthan 

the load estimated on the basis of the non-linear analysis. Furthermore, 

the computer time required for obtaining the buckling load on the basis of 

the linear analysis is much smaller than that required for obtaining the 

buckling load on the basis of the non-linear analysis. It should be noted, 

that the smallest in-phase buckling load estimate (point A) wi l l  be larger 

than the actual in-phase buckling load. 

buckling load estimate (point C) may be smaller than the smallest in-phase 

buckling load estimate (point A) since they are estimates to different possi- 

ble critical loads (in-phase and out-of-phase). 

However, the smallest out-of-phase 

Solution by the Determinant Evaluation Method: The de terminant 

evaluation method represents the classical approach to the stability problem. 

For any assumed value of the applied load, a static analysis is performed to 

establish the prebuckling stress and deformation components a t  every point 

chosen for Runge Kutta integration in every shell segment. 

complished by employing the me ;hods described in Chapter 3 fo r  either linear 

This is ac- 
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o r  nonlineartheory. The results of this analysis a r e  introduced a s  the 

terms with subscript P in Equations (4-6) and (4-7) if 

metric, or Equations (4-8) if the loading i s  non-axisym 

equations a r e  then integrated usihg the the Runge-Kutta procedure in a 

fashion analogous to that af the static analysis of Chapter 3 and 

stressed stiffness matrices of the segments a r e  formed. 

matrix associated with the stability analysis does not exist, inasmuch as 

the loads have been eliminated from the pertinent equations by taking into 

account that prior to buckling, the shell is in a state of equilibrium under 

the influence of the buckling loads. 

second state of equilibrium under the buckling loads. 

stiffness matrices of each segment a r e  8 x 8 matrices for shells subjected 

to axisymmetric loading, or 8M x 8M matrices for shells subjected to un- 

symmetric loading, where M is the number of harmonic terms retained in 

the analysis. 

Note, that a load 

That is, the buckling state is a possible 

The prestressed , 

The prestressed stiffness matrices of the segments a r e  stacked to 

obtain the total matrix of the structure by a procedure identical to that 

discussed in detail in Chapter 3. 

ing the boundary conditions. 

Equation (3-30) in the form 

This matrix is then reduced by employ- 

Thus, we obtain an equation analogous to 

or  
A 

det[K = 0 
p F  

(4-9) 

(4- 1 0 )  

If the assumed load was the correct buckling load corresponding to the 

assumed harmonic buckling configuration, Equation (4- 9) would be identically 

satisfied. Otherwise the determinant would not vanish. 



Inasmuchas the prestressed stiffness matrix may be large, the evalua- 

tion of its determinant on a computer may involve overflow o r  underflow. 

To avoid this problem, the matrix [K ] is first converted into an upper 

triangular matrix by a technique such a s  Gaussian elimination 11181. 

The value of the determinant of such a matrix is  the product of its diagonal 

terms. Since the determinant vanishes, these terms can be normalized 

by dividing each term by its absolute value. 

ant is always k l .  

loads signifies that the value of the determinant vanishes between these two 

loads, 

6 

P F  

Thus, the value of the determin- 

A sign change of the. determinant between two consecutive 

This technique avoids the establishment of spurious sign changes 

rw. 
The assumed load is incremented until the determinant changes sign. 

The load increments may be either constant o r  varying. The latter may 

be established by extrapolation from the previous load increments. 

When the prebuckled state is analyzed by the linear bending theory, 

only one static solution for  one load is required. The prebuckling s t ress  

resultants and displacements corresponding to other values of the applied 

load may be established by superposition. When the prebuckled state is 

analyzed by the nonlinear theory, static solutions a re  necessary for each 

assumed value of the load. 

method described in Chapter 2. Aside from the additional accuracy of a 

nonlinear prebuckling solution @g], other f lexibi l i ty  of analysis may be 

These solutions a r e  established by the Newtonian 

gained by including such an option. 

nonlinear prebuckling analysis does not include consideration of the local 

For example, while normal solution by a 

panel problem considered by Dickson and Brol l ia r  [141] , the similarity 

between the i terative natures of both solutions make a combination possible. 
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3 

Thus, the consideration of the local panel stabil i ty problem prior t o  overall 

shell  buckling, can be incorporated in to  the iterations needed for a nonlinear 

prebuckling analysis. 

With the aforementioned procedure, all the possible buckling configura- 

tion may be checked. In the case of axisymmetric loading,, each i 
harmonic 

can be checked independently of the others. Since all harmonics (n=  0 - y )  

cannot be investigated, the problem remains to insure that the lowest 

buckling load is associated with one of the harmonics checked, 

be indicated that an automated checking procedure may result in  erroneous 

conclusions. 

It should 

Figure 22 presents the lowest buckling loads, obtained for 

different buckling configurations corresponding to the indicated harmonics 

for the classical problem of a circular cylinder subjected to end compression 

[142]. If an automatic procedure i s  programmed to establish a relative mini- 

mum within a given range of harmonics, the buckling loads corresponding 

to any of the harmonics n = 2, 7,9, 11 could be obtained a s  a solution, where- 

as ,  the actual buckling load corresponds to n = 2. 

of the buckling loads obtained for n = 2, 7, 9, 11 do not differ appreciably, 

however, for each harmonie the buckled configurations differ 

In this example, the values 

considerably. 

A basic difference in  the stability analysis of-shells subjected to axisym- 

metric and unsymmetric loading pertains to the type of buckling shapes that 

must be considered. If the nonlinear Equations (2-9) were converted to a 

form suitable for stability analysis, a s  previously discussed in  this Chapter, 

and if only one load harmonic (n # 0) i s  considered, several buckling con- 

figurations described by different families of harmonics a r e  found as mathe- 

matically acceptable solutions. The prestressed stiffness matrices corre- 

sponding to these different buckling configurations assume the form of the 
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Case I: Axisymmetric loading ( a  = 0) [all 
harmonics are uncoupled in the 
prestressed stiffness matrix] 
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Case 111: Unsylmnetric loading ( a  = 0,2  
uncoupled families of harmon 
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[all harmonics are coupled in the 
prestressed stiffness matrix] 
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Forms of the Prestressed Stiffness Matyix Corresponding to Three Harmonic 
(0,2,4) Loading. 
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trident matrices, shown in Fig. 23a, b. 

stressed stiffness matrices corresponding to different harmonic loadings 

Figure 23 shows how these pre- 

uncouple into families of harmonics. Each family of harmonics represents 

a different estimate of the buckling load (see Fig. 2 l, points A, B, C, D- * * ), 

each associated with a different buckling configuration. 

figurations is a close approximation to  the actual buckling configuration, 

then the buckling load corresponding to this configuration will be lower than 

all the other estimates (points B, C, Do in Fig. 21)  obtained on the basis 

If one of these con- 

of the linear prebuckling analysis. 

than the buckling load obtained on the basis of a nonlinear prebuckling analysis 

(point A , Fig. 21) retaining the same number of terms in the Fourier series. 

Furthermore, this estimate may be lower 

1 

In Reference 118 a stability analysis of a shell of revolution sub- 

jected to some types of unsymrnetric loading is presented. 

this reference several nonlinear terms usually included [eo, 24, 28, 32, 1171 

in shell buckling analybes have been omitted. Also, only the family of 

harmonics which a re  multiples of the load is assumed to represent the 

configuration corresponding to the lowest buckling load. 

based on the conclusion (invoking St. Venant’s principle [118, p. 771) that the 

effect of load harmonics with 4 2  2 dissappear a t  a small distance (within a 

diameter of the latitude circle) away from the loaded edge. 

however, is not always valid. 

short decay length; however, the decay lengths of the in-plane loads such 

as N (2) or  T~ ‘(2) may be many times larger than the diameter of the latitude 

circle, even for shells with ring reinforcement f l l l ,  1431. 

the assumptions of Reference 118 may lead to contradictory 

However, in 

I 

This as  sumption is 

This conclusion, 

have a Transverse loads, such as J- *(2) e p ’  

CP 
In certain cases, 

conclusions. 

harmonic configuration when subjected to  axisymmetric load. 

For instance, consider a shell which buckles in the n = 10 

If an$  = 3 
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harmonic load is added to this shell, the assumptions of Reference 118 

lead to two possible conclusions, If it is assumed that the additional load 

(C= 3 harmonic) represents only an edge effect, then the buckling configura- 

tion will be similar to that (n= 10) established when the shell was subjecteg 

to axisymmetric loading. Thus, the best estimate for the buckling load ~ 3 y  

correspond to a buckling configuration associated with the family of 

which contains n =  10 (see Figure 23a, b, Case IV). On the other ha 

buckled configuration corresponding to the lowest load is obtained from the 

family of harmonics which a r e  multiples of the loads, then the buckled con- 

figuration corresponding to the lowest buckling load in the aforementioned 

example 

, 

should be obtained by n = 0, 3 , 6 , 9 ,  12, 15.. . . 
The added complexity of the unsymmetric stability analysis, over the 

Even though only axisyrnmetric, can be seen from the above discussion. 

one load harmonic (4,) is applied, and the prebuckling analysis is on the 

basis of linear bending theory, families of harmonics must be employed to 

establish the estimates fo r  the buckled configurations. 

tr ices a r e  involved, and must be treated as discussed in Chapter 3 

the nonlinear unsymmetric static analysis. 

ployed in the prebuckling analysis, al l  harmonics must be used to describe 

the buckled configuration. 

Thus, larger ma- 

for 

If the nonlinear theory is  em- 

The number of terms to be retained in the truncated Fourier ser ies  ex- 

pansions of the shell functions requires further investigation in both cases 

of stability analysis of shells subjected to unsymmetric loading and cases of 



unsymmetric nonlinear s t ress  analysis using the Newtonian iteration tech- 

-* 'niques [ZO, 221. It may be possible to obtain accurate estimates of the buck- 

kfig configuration by retaining only the n = 0 harmonic and a few more judi- 

S b K '  cibusly chosen harmonics from a family af harmonics, not necessarily in 

consecutive order. If this were the case, itwouldbe evenmore preferable to employ 

the eigenvalue approach rather than the Newtonian iteration procedure. 

this case, a few terms from the dominant harmonic family would yield more 

satisfactory results than the same number of harmonic terms in the New- 

tonian iteration solution, since more significant terms would be contained in  

In 

the eigenvalue solution. 

low ellipsoidal heads subjected to internal pressure, buckle in a relatively 

high harmonic pattern (n-  50). 

load, in addition to internal pressure, the question ar ises  a s  to whether the 

buckled configuration can be approximated by some lower harmonics and 

some in the proximity of n =  50, omitting the intermediate members of the 

For instance, some shells such as  relatively shal- 

If the ellipsoid i s  subjected to an unsymmetric 

harmonic families, or all the harmonics up to n =  50 must be retained for a 

satisfactory approximation of the buckled Configuration. 

It should a l s o  be noted, that the high loca l  wrinkling associated wi th  high 

harmonics, may require the inclusion of shear deformation in the theory 

employed [ 11 31. 



, 

In conclusion, it may be stated that the determinant eval 

generally, has two basic disadvantages. Firstly, very. extensive 

time is required for establishing the buckling load of shells of eo 

geometry. 

buckling load cannot be estimated apriori) many load increments may have 

to be considered before the value of the load causing the determinant of 

the prestressed stiffness matrix to vanish is established. 

lem is even more complex, 

a r e  close together E1451 even fo r  buckling configurations described by a 

single harmonic. 

causing the sign of the determinant to change. 

disadvantages, other stability analysis techniques have been developed. 

This is primarily due to the fact that i f  the magnitude of the 

I 

The second prob- 

since it is possible that the low buckling loads 

Thus, a load increment may skip two close roots without 

To circumvent the foregoing 

Eigenvalue Methods: When a problem involving the stability analysis 

of any structure is analyzed by finite element methods, it may be reduced to 

a linear eigenvalue problem of the form 

([A] -!- X[B])CAl = 0 (4- 11) 

where [A] is the stiffness matrix of the elements and [B] is the incremental 

stiffness matrix. Each of these matrices is formed separately by assuming 

a displacement function for the element. In finite difference or numerical 

integration techniques, however, a linear eigenvalue formulation is not 

readily deduced. The first eigenvalue- type analysis employing numerical 

integration techniques, w a s  formulated by Cohen for natural vibration’s of 
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shells [l13], and subsequently for stability analysis of shells subjected to 

axisymmetric loads f1171. A similar method was later utilized in Reference 

31 for finite differences. The method is iterative, based on the Stodola 

technique [114], and is essentZally the inverse power method [115]. 

Basically, the homogeneous equations resulting from stability (vibrations) 

analysis a r e  converted into a ser ies  of nonhomogeneous equations by assum- 

ing a buckled (vibration) shape and, thus, creating nonhomogeneous terms. 

The solution of this problem provides a more satisfactory estimate fo r  the 

buckled co,nfiguration which, in turn, is employed to establish a new set of 

non-homogeneous terms. 

r , .  
< i *  I 

k 

The procedure is repeated until the lowest eigen- 

value (buckling load o r  frequency) is obtained for the harmonic configuration 

under consideration. 

This method requires less  computer time than the determinant evaluation 

How- method, and moreover, the possibility of skipping roots is eliminated. 

ever, it has some disadvantages. In vibration problems, wherein it is 

necessary to compute higher frequencies, in order to establish the higher 

roots, all the lower roots must be swept out [114]. 

the time required to establish two consecutive roots is a function of the ratio 

of the value of the lower root to the higher root. That is, the time is larger 

when this ratio approaches unity. Thus, in order to decrease the time re- 

quired for establishing the second root, the origin shouldbe shifted to the first 

It has alsobeenfound, that 

root [116]. In stability problems, where only the lowest buckling load for  a 

particular circumferential configuration is of interest, the aforementioned 

drawbacks of the inverse power method of solution do not exist. However, 

for  a shell of complex geometry, convergence may be slow depending upon 

the initial choice of the eigenvectors (u, v, w) [114,140]. 
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In a recent investigation p38], the finite differe chnique is applied 

to the shell energy integral, rather than the differe 

um and separate stiffness and incremental stiffnes 

tions of equilibri 

e s  a r e  formed, 

However, the inverse power method is still employe solve the resulting 

linear eigenvalue problem. 

To overcome the foregoing difficultie&, a different formulation of t . 2  

stability problem has been presented in Reference 157.- 

stressed stiffness matrix, [K ] of the structure, is an unknown transcen- 

The basic pre- 
h. 

P F  
dental function of the prestress state variables. 

Przemieniecki [146] shows that the dynamic stiffness matrix is actually an 

In vibration analysis, 

jnfinite power ser ies  on the frequency. 

stability analysis. Thus, we obtain 

This finding may be extended to 

(4-12) [%] = E], t X[q] t X 2 -  [KII] t X3[K-] t * * =  
I11 F F F 

where X is the buckling load. In Reference 146, it is shown that the ratio 

of consecutive matrices [K.] / [Ki 1] is of the order of Young's Modulus 

of the structure. 

methods (see Equation (4-11)), the matrix [A] is an approximation to mF, 
whereas the matrix [B] is an approximation to [K ] , to the order of accuracy 

of the assumed deflection functions for the element. 

h 6 

l F  F 
In formulating the stability problem by finite element 

h 

I F  
In the numerical inte- 

gration technique 0, and [I?] can be formed exactly using the exact 
P F  

differential equations. 

Inasmuchas the relative magnitudes of these matrices a r e  known, the follow- 

However, it i s  impractical to form the other matrices. 

ing solution technqiue has been proposed [157]. Using Equation (4-12), the 

stability Equation (4-9) can be cast  into the following form: 

(4- 13a) 3 -  -k [K ] d- 0 
F 
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This equation may be rewritten in the following 

o r  

iterative form 

(4- 13b) 

0 (4- 14) 

where Xi - i s  the buckling load estimated in the (i - 1)st  trial. 

The iteration Equation (4-14) is utilized a s  follows. As  in the deter- 

minant evaluation method, the prebuckling analysis fo r  the establishment 

of the prebuckling terms in Equations (4-6) o r  (4-8) is performed fo r  a 

chosen value of the load on the basis of either linear o r  nonlinear bending 

theory. 

stiffness matrix of the structure [K ( A .  is formed, where in this no- 

tation, A i - l  signifies the chosen value of the load. The structure stiffness 

matrix, [KIF (without the prestress  terms) ,  is also formed, fo r  the buck- 

ling configuration under consideration. The subtraction of these two ma- 

trices, a s  in Equation (4-14), isolates that part  of the prestressed stiffness 

matrix which is  dependent upon the buckling load. 

(Equation (4-14)) problem is  then formed, and solved for  the new value of 

the load, Xi. o r  X i / X i m l  1 i-1 

approaches unity to a desired degree of accuracy. 

As in the deferminant evaluatsn technique, the reduced prestressed 
e 

) ]  P '-' F 

R 

A linear eigenvalue 

The iteration sequence converges when I .  = X 

Although this must be 

accomplished for  each root desired, satisfactory approximations to higher 

roots a r e  also available when X . / X  

due to the fact that the numerical integration technique does not lead to large 

matrix equations and, thus, there is computer storage available for an eigen- 

value solution algorithm which provides all  the roots of Equation (4-14). 

this case, the convenient in-core algorithm used is the Householder [115] 
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reaches unity fo r  one root. This is 
1 i-1 

In 
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method. 

of the stability problem produces real  roots. 

Cohen [117] has shown that the numerical integration formulation 

This indicates that the ma- 

trices in the linear eigenvalue problem will both be symmetric, and one 

will be positive definite. 

nique i s  assured [115]. 

Thus, the applicability of the Householder tech- 

f r  

The specialization required for the consideration of unsymmetric 

loading a s  opposed to axisyxnmetric loading, and nonlinear prebuckling 

analysis a s  opposed to linear prebuckling analysis, is applicable to this 

method as  well as to the determinant evaluation procedure discussed pre- 

viously. 

will not involve ooupling of the harmonics, regardless if the load is symmetric 

4 
In this case, it should be noted that the stiffness matrix [KIF 

o r  not. The [r] matrix, however, will be coupled a s  described pre- 
P F  

viously. 

An iteration equation analogous to Equation (4- 14) has been presented 

by Bushnell [138] fo r  establishing the critical load a t  buckling of shells of 

revolution, using a nonlinear prebuckling state and finite difference S. 

Equation of Reference 138 may be obtained by rewriting equation (4- 13b) 

This 

In this case, for  convergence X j  -, 0. It should be noted, that in the formu- 

lation herein presented, iteration is necessary regardless of whether the 

prebuckling analysis is linear or  nonlinear. This is due to the fact that the 

prestressed stiffness matrix is defined by Equation (4-12), whereas, in 

Reference 138 for the case of a linear prebuckling analysis, Equations (4-15) 

reduce to Equations (4- 1 l), since the prestressed stiffness matrix is 
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approximated a s  being linear in  the eigenvalue. Either of Equations (4-14) 

or  (4-15) can be employed to obtain a solution to the stability problem, after 

few iteration cycles. Examples using Equations (4-14) will be presented in 

Chapter 6 .  

Many stability problems have a double-loading system. For  example, 

if a tank with an insulating wall  is manufactured a t  room temperature and 

then partly filled with a cryogen, the tank is subjected to a state of stress. 

If this tank is then accelerated, it is subjected to mechanical loads which 

may cause buckling. The effect of the thermal prestress  can easily be - 
considered in the analysis, by including it in the @]F and [K (1. ) ]  ma- 

p l-' F 
trices of Equations (4-14). This will necessitate the solution of two static 

prestress problems, one with the thermal loads and the other with com- 

bined thermal and mechanical loading. 

buckling analysis, for  shells subjected to unsymmetric load, the harmonics 

will couple in the matr* [KIF as  adjusted for the thermal effect. 

Therefore, even fo r  a linear pre- 

A 



CHAPTER 5 

NATURAL VIBRATIONS 

In this chapter, the free vibrations of shells of revolutions from a 

stress-free o r  a prestressed state a r e  analyzed. 

analysis may be applied to establish the dynamic response of shells of 

The results of this 

revolution subjected to a harmonic exiting force o r  to any transient load- 

ing if the modal approach is to be employed. 

Dynamic Equilibrium: The nonlinear equations of motion of shells 

of revolution may be obtained from the equilibrium Equations (1-20) by 

including the effects of meridional, circumferential, normal, and rotatory 

inertia. Thus, we obtain 

.I. 1 2 Tp 

r l N e l e  t r ( N c p e r o  ) ,cp- Qerl sincp = - r  r (f t f e ) t  r r (a ii - a  6 ) 
l o  e l o  0 l c p  0 

96 .. 
- N  r coscp-r Q = - r  r (f t f  ) t r l r o ( a o ~ t a l W e )  

( N c p r o ) p c p +  rlNepe,e e 1 o c p  1 o c p  cp 

.. .I. -I* 

(Qcpro),cpt rlQe,e t r N t Nerl sincp= -rlro(fc t f ) t rlroaOw (5- 1) 
o c p  6 

- (Mcpro),cp +Mer l  coscpt r r Q = -r  r m t r r (a G t  a2we) l o c p  l o  e l o  1 -r  M 

M r coscptr r Q = - r  r m t r  r (a i i - a  ;P ; )  -(Mcpero)’cp - rlMe,e’ cpe 1 l o 0  l o  cp l o  1 2 c p  

where the (*  ) signifies differentiation with respect to time; the load 
* 

fi( i= e,Y, 5 )  and nonlinear terms fi (i = 8,p, C) a r e  defined in Equations (1-21) 

and @-22) respectively, and 

(5-2) 

p(6)  being the mass density. It is recognized, that generally, if the effect 

of rotatory inertia is significant, the effect of shear deformation is not 
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negligible. 

effect of shear deformation will be neglected. 

combined rotatory inertia of the skin and reinforcements may influence the 

However, in this analysis, a s  in  References 113 and 118, the 

In reinforced shells, the 

results even when the effect of shear deformation is negligible. For mono- 

coque or  sandwich shells, a1 = 0 since in these shells, 6 is measured from 

the centroid of their cross-sections. 

the a. will a l l  be different from zero. 
J 

For reinforced o r  laminated shells, 

Utilizing Equations (5-1) and following a procedure analogous to that 

presented in Chapter 1, a set of equations analogous to Equations (1-27) but 

including the inertia effects may be obtained. 

shell is  to be analyzed, Equations (1-31) or  (1-32) may be employed without 

any modification. As in Chapter 4, in the case of stability of shells, the 

typical shell functjon denoted by Y will be considered a s  the s u m  of its 

values Yp, in the prestressed equilibrium state and its change due to the 

vibrations, YVeiwt. Thus, we have 

If a reinforced o r  a laminated 

i W t  Y = Y p t Y  V e ( 5 -  3) 

where i = f l  and w is the circular frequency of vibration. 

We shall postulate that the rotations due to the vibrations a r e  small 

as  compared to unity, and consequently, we shall disregard the terms in- 

volving products of these rotations with the s t ress  resultant amplitudes due 

to the vibrations. Thus, following a procedure analogous to that described 

in Chapter 4, we obtain: 

2 S i n r p  
u) cp t N  e UJ cpp - NcpepWe- N cpe W e p  1 - W  (aou-alWg)-feV- r 

0 
2 w (alu-a w ) 

2cP 



cos coscp M e e  2 M 
cp,ep = Me2 - M - - 2 L  t Jcp t w  (alvta2we) r r l  0 cp ro 0 

r 

T M sincp 
w t w  w u,cp= coscp v'e + ' C P Q  + cpe 

rl  r 0 r 0 K33 roK33 "ep cp e cpp 

COST sincp) - (sincp 
r v*e 7 

-1 

0 0 
Mcpe = 

(5-4: 

t -) 1 - 2 W , ( ) y - -  coscp 

r l  0 
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M 
- T~~ t sincp r Ncpe - 

0 

where 

These equations can be integrated numerically to establish the frequencies 

and mode shapes of f ree  vibration of shells of revolution subjected to axisym- 

metric o r  unsymmetric prestress.  

been employed only in establishing the frequencies of non-prestres sed shells 

of revolution [112, 1131. A finite difference solution for axisymmetric states 

of prestress  has been presented in Reference 24. 

The numerical integration method has 

In the analysis of a reinforced o r  laminated shell, Equations (4-4) or  

(4- 5) may be employed without any modification. 

In the above equations, the te rm eiwt has been factored out. Thus, 

the solution of these equations will yield the a'mplitudes of s t ress  resultants 

and displacements. It should be noted, that in Equations (5-4, 5) the terms 

involving products of rotations due to the prestress and s t ress  resultant 

amplitudes due to vibration a r e  retained. It is realized, however, that the 

rotations due to  the prestress  a re  small as compared to unity, and conse- 

quently their products with the s t ress  resultant amplitudes due to vibration 
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may be negligible a s  compared to the stress resultants. 

Vibration Under Prestress:  For axisymmetric prestress,  the pre- 

s t ress  terms a r e  of the zeroth harmonic, while the vibrations may involve 

any single harmonic of the Fourier components. For  non-axisymmetric pre- 

stress,  the prestress  harmonics will  couple with the vibration state harmonics 

in a fashion analogous to that discussed in Chapter 4 for buckling of shells 

subjected to non-axisymmetric loads. Inasmuchas the formulation of the 

problem of stability and the problem of vibration under prestress i s  similar, 

the analysis of the special cases of prestress  presented in Chapter 4 i s  

valid for the analysis of vibrations under prestress.  Hence, Equations (4-6) 

may be employed for problems involving vibration under axisymmetric pre- 

stress,  whereas, Equations (4-8) may be employed for  problems associated 

with vibrations under non-axisymmetric prestress. 

be modified, firstly, by adding to the terms fiB (i= 8, cp, C )  the effects of in- 

ertia. Thus 

These equations must 

Secondly, by adding the following te rm to Equation (4-6d) for vibrations under 

axisymmetric prestress  and to Equation (4-8d) for vibrations under non- 

axisymmetric prestress 



The variables with a subscript B a r e  defined in Equations (4-7) for vibrations 

under axisymmetric prestress  and a r e  obtained from Equations (2-9) for vi- 

brations under unsymrnetric prestress. 

If a reinforced or  a laminated shell is to be analyzed, Equations (4-4) 

o r  (4-5) may still be utilized without any modification. 

For free vibrations of non-prestressed shells all the terms with a 

subscript P, a s  well as the prestress loads F. (i = 8, @, 6)  vanish. 
1 

Numerical Solutions: The same two methods used for solving stability 

Thus in the sequel only problems will be used in solving vibration problems. 

a brief discussion of the application of these two methods will be presented. 

Determinant Evaluation Method: In problems of vibration about a 
+ 

prestressed state, the necessary prestress terms must first be determined. 

This is done by means of the static analysis outlined in Chapter 3, using 

either linear or  nonlinear theory. 

and the vibration Equations ( 5 4 , s )  a re  utilized to form a stiffness matrix 

as  in Chapter 4. In the case of vibrations this "dynamic stiffness matrix" 

[146] is a function of frequency. 

the frequencies which render the determinant of the dynamic stiffness matrix 

A value of the frequency is then assumed, 

The natural frequencies a r e  established a s  

for the structure equal to zero. The techniques of finding these frequencies 

a re  the same a s  fo r  finding the critical loads a t  buckling. 

Linear Eigenvalue Methods: The two techniques discussed in Chapter 

4 for  stability a re  both applicable to the vibration problem. The equations, 

corresponding to Equations (4- 14), suitable for analyzing vibrations under pre- 

stress can be formulated in  the following manner. The prestress stiffness 

matrix, [I!?] , of the structure, is formed from the static solution for the 

shell subjected to the given prestress. 
h F 

The dynamic stiffness matrix, [KD] , 
F 
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of the structure, is formulated by assuming a value for the frequency and 

using the dynamic Equations (5-4, 5). 

lation a s  discussed in Chapter 4, we may write 

Thus, following the stability formu- 

These equations may be solved by the eigenvalue solution technique and the 

iteration procedure discussed in Chapter 4. 

the numerical integration method for solving the vibration problems of 

It has been shown [113] that 

shells of revolution yields real, positive frequencies. 

in Equation (5-8) both -trices will be symmetric and positive definite. 

Thus, the applicability of the Householder technique is assured [115]. 

This indicates that 
I 

It should be noted that Equation (5-8) could be reformulated as follows, 

( 5 - 9 )  

In this case, convergence is indicated as  0: 4 0 while in  Equation (5-8) con- 

2 2  vergence is indicated a s  W. /wi 4 1. 
1 -  

The advantages of using the Householder technique and of using the 

formulations (5-8,9) over the determinant method were noted in Ch?.pter 4. 

Of specific importance in dynamics of shells i s  the ability to quickly estimate 

many frequencies while having completed an  iteration solution for only one. 

For problems of free vibrations of unprestressed shells of revolution 

the static stiffness matrix is used in place of the prestressed stiffness matrix 

of the structure. All  other operations remain the same. 
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Cr i t i ca l  Speeds of Rotating Shells: The matrix equations f o r  s h e l l  

dynamics, referred t o  a coordinate systemwhich ro ta tes  w i t h  the shell  about 

i t s  axis of revolution w i t h  constant velocity, sd, may be cast i n  the form 

A 

where and [%] have been defined previously as the incremental displace- 

ment vector, and the fixed preload s t i f fness  matrix respectively, and where 

[qDIF is the variable load prestress  s t i f fnes s  matrix including the rotat ing 
EI 

i ne r t i a  terms of the incremental state. The addi t ional  matrices, [MI, and 

dynamic effects ,  

may be investigated by 

4 

[D] ,  contain the  nonrotating ine r t i a  and the Coriolis 

The dynamic s t a b i l i t y  of a rotat ing shel l  respectively. 

substi tuting 

into Equation (5-10) t o  obtain 

I n  the presently programmed version of the STARS vibrations program (STARs-2V), 

Equation (5-12) is  not solved i n  complete form but rather f o r  special  cases. 

For the vibration case discussed previously i n  t h i s  chapter, s1 = 0, and Equation 

( 5 - 1 2 )  w i l l  reduce t o  Equation (5-8). The code words - FREV and - VPRE w i l l  then 

define the shell  as being either stress-free or axisyrnmetrically prestressed. 

For the case of c r i t i c a l  speed analysis, W = 0, and Equation (5 -12)  

reduces t o  



A 
I n  t h i s  case the matrix 

accelerations on both the prestressed and ircremental deformation states of 

the shell. The code words CRSP and PCRS - again are used t o  define the shell  

as being in i t i a l ly  stress-free or  axisymmetrically prestressed (s ta t ic  load). 

[%Dl contains the effects of the centrifugal 

- 

A t  the request of NASA [164 a third option i s  also available wherein 

O =  fbz. In  th i s  case the Coriolis effects are neglected and the Equation 

(5-12) reduces to  

The neglect of the Coriolis terms is not a serious violation and is  consistent 

w i t h  the fact that torsional prestress i n  not allmed in  the present programs. 

In  addition, the effect of the Coriolis terms has been found to  decrease f o r  

higher rotational speeds [167] such as those of interest for  the present 

analysis. 

of rotating sklells wherein some additional dynamic load of unknuwn description 

i s  causing a "mass perturbation" upon the shell. 

The above option may be utilized t o  approximate cases in  the analysis 

This perturbation is  described 

proportionally through the mul t ip l ie r  upon the c r i t i ca l  speed, f ,  and is applied 

in  whatever harmonic is  being investigated for  c r i t i ca l  speeds. Again the code 

words CRSR and - PCSR differentiate only between the non-existence or  existence 

of s t a t i c  preload. 



CHAPTER 6 

NlTMERICAL EXAMPLES 

I n  t h i s  chapter, solutions using the programs herein documented w i l l  be 

compared t o  solutions u t i l i z ing  o ther  numerical methods. Comparisons of 

l inear  s t a t i c  problems involving axisymmetric and unsymmetric 

loading, as w e l l  as nonlinear, axisymmetric problems, are availabe i n  t h e ,  

literature 199, 1021 and w i l l  not be presented herein. 

The first set of problems t o  be investigated are s t a t i c  s t a b i l i t y  prob- 

lems which w i l l  be analyzed by employing the solution technique presented i n  

Chapter 4. This technique was  first applied t o  problems involving cylinders. 

It was established tha t  the technique produced accurate and rapid resu l t s  

using coarse s t ruc tura l  idealizations [157 1 . 
i n  predicting load reversals,  or obtAining higher eigenvectors,or eigenvectors 

which contained many waves within a segment. Thus, it is  apparent that it is 

Diff icul ty  w a s  not encountered 

the number of integration points i n  a numerical integration method tha t  is  

‘i significant,  rather than the number of segments. However, compared t o  f i n i t e  

element or f i n i t e  difference methods, the segmentation u t i l i zed  i n  the 

numerical integration method permits the use of much smaller m t r i c e s  i n  the 

eigenvalue problem. 

Numerical Examples - Problem 1: 

cylinder shown i n  Figure 24, subjected t o  an a x i a l  compressive end-load. 

problem w a s  chosen using the sizing parameters of Reference 142 t o  insure a 

c r i t i c a l  mode shape i n  which the cross section remains ci rcular  (n=O), and 

there is only one half-wave along the length of the cylinder ( m = l ) .  

The first test problem involved the short  

The 

The 
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t =  in. 
7 E = 1.0 x 10 psi, 

V = 0.3 

NCr 

I 

6 . 5  in. 

1 

Figure 24 Short End-Loaded Cylinder 
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boundary conditions used were c l a s s i ca l  simple supports, Le., radial 

deformation was unrestrained u n t i l  the  point of incipient  buckling. 

through 3 show di f fe ren t  aspects of the resul ts .  

Tables 1 

The first table demonstrates the accuracy of the resu l t s  and the speed of 

convergence. A s  can be seen, only two i te ra t ions  are necessary f o r  the 

prediction of the first root. The second t ab le  demonstrates the speed of 

convergence t o  higher eigenvalues due to  the addi t ional  information obtained i n  

the current method. For a first trial load value, approximations t o  higher 

eigenvalues are available as w e l l  as t o  the lowest. A s  can be seen from the 

table  when the first eigenvalue is obtained, a good approximation is available 

fo r  the second eigenvalue and it can be obtained w i t h  only one additional 

i terat ion.  Although t h i s  capabili ty may not be overly irrrportant i n  s t a b i l i t y  

analysis, it is  very useful i n  free vibration analysis. 

demonstrates the various capabi l i t ies  of the current method with a coarse grid. 

A s  can be seen, no d i f f i cu l ty  was encountered i n  obtaining eigenvalues corres- 

ponding t o  eigenvectors with many waves within a segment. Only two i te ra t ions  

were used t o  obtain each value i n  Table 3, and therefore the values should not 

be considered as f u l l y  converged. 

the sens i t i v i ty  of the method t o  negative eigen5alues. 

The th i rd  tab le  

The first entry i n  the table was used t o  test 

The last entry i n  Table 3 shows that an eigenvector w i t h  15 half-waves i n  

The segment, of course, represents 8 one segment was calculated correctly. 

degrees of freedom i n  the s t i f fnes s  matrix. 

correctly would require up t o  4 nodes per half-wave i n  a f i n i t e  element 

To calculate such an eigenvector 

idealization. 

order of 4x15x4+4 = 244 d.0.f. 

integration points must be kept t o  a reasonable l i m i t  for t i m e  considerations. 

Thus the equivalent degree of freedom requirement would be of the 

Even i n  numerical integration the number of 

15 3 



Table I: Buckling of' Short Axially Loaded Cylinder 

2 Segments 

Trial Load Result 

1 104 32.45 104 

32 104 32.09 104 

Timoshenko (Ref l k  

4 Segments 

Trial Load' Result 

1 104 32.14 x lo4 

32 104 32.09 104 32.07 104 

Timo shenko 
(Ref. 142) 

32. O?X104 

88. 12a04 

193.43~10~ 

Table 2: Short Cylinder Buckling Load Convergence 

Current Method (n=O) 4 Segments 

1st Root 



Table 3: Short Cylinder, High BucMina Loads 

Timoshenko (Ref. 142) 
~ - 

A ,  = 32.07 x l o4  

A,= 769.26 x l o 4  

A,= 1046.86 x l o 4  

1367.21 x l o 4  

&= 1730.29 x l o 4  

4806 x 10 4 

A,, = 6920 x lo4  

Azo= 8544 x l o 4  

A Z y =  13,350 x 10 4 

28 = 16,746 x lo4 
4 xJo= 19,224 x 10 

Current Method (n=O) 2 Segments 

Prediction 

32.09 x l o 4  * 
771 .O x lo4  

1050.1 x l o 4  

1370.45 x 10 4 

1750.8 a 10 4 

5010 x l o 4  

7321 x l o 4  
4 8680 x i o  

14,410 x l o 4  
4 17,212 x 10 

19,080 104 
I 

% Difference 

.06 

23 

31  

.24 

1.2 

4.2 

5.8 

1.6 

7 99 

2.8 

975 

* Starting trial value was  set at 1 x 104 tension. 



From the f e w  test problems f o r  t h i s  purpose it was  noted that about 10 

integration points is a conservatively suf f ic ien t  number t o  accurately 

describeone half-wave i n  a prospective eigenvector. 

Numerical Examples - Problem 2: 

ring-stringer eccentr ical ly  reinforced cylinder (see Figure 25). 

The second test problem involved a large, 

The loading 

w a s  a fixed in te rna l  s tab i l iz ing  pressure of 31 psi . ,  i n  combination w i t h  a 

variable end load. Classical  simple support boundary conditions were again 

u t i l i zed  t o  enable comparison with References 141 and 150. The idealization 

used consisted of 20 segments f o r  the whole structure,  and 4 segments f o r  the 

panel. 

modes are presented i n  Tables 4, 5 and 6. 

t o  be n=O, m=l3 .  

Comparisons w i t h  analyt ical  r e su l t s  f o r  the overal l  and panel buckling 

The overal l  c r i t i c a l  mode was found 

Table 4 shows the analyt ical  r e su l t s  f o r  t he  n=O calculations, 

and it can be seen that f o r  t h i s  problem also,  the convergence character is t ics  

are excellent. By the fourth pass, the changefromanticipated t o  corrected 

.value of the c r i t i c a l  load is only .OOOl@. A comparison of the STARS-2B 

answers from the converged (fourth) pass, f o r  estimates of some of the higher 

loads, shows an average difference of .5% ( w i t h  a maximum of 2.&) f o r  the 

f i rs t  11 roots, and an average difference of 2.72% ( w i t h  a maximum of 16) f o r  

the first 18 roots, when compared t o  NASA TND 2960 (Ref. 150). Thus, when the 

f irst  root i s  converged, excellent estimates are available f o r  a large number 

of the higher roots. 

shown i n  Table 5. 

t h i s  is not verified u n t i l  the th i rd  pass. 

150 and the current work, should be close, but do not have t o  agree exactly, 

Similar resu l t s  were obtained f o r  the panel modes as 

I n  this  case convergence is  obtained i n  two passes, although 

The answers from References 141 and 

due t o  cer ta in  theoret ical  differences i n  the formulations. Reference 150 

uses Donr.el1 shell theory, while the current e f f o r t  u t i l i z e s  a Love-Reissner- 
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20 In. Ends are simply supported. 
Stringers are 'Ismewed out, " 

7 

b. Panel Shel l  
Notes : -- 

Loading 
1) Compressive end load: N 
2) Internal s tabi l iz ing pressure: 31 psi 

1) Ends are  simply supported 
Boundary Conditions 



Root 
N o .  

l=c r i t  . 
2 

3 

4 

5 

6 

7 

8 

9 

10 

ll 

1 2  

13 

14 

15 

16 

17 

18 

- 

m 

13 

14 

12 

15 

- 

16 

ll 

17 

10 

18 

19 

9 

20 

21 

22 

a 
23 

24 

2: 

Table 4: Overall Buckling of Reinforced Cylinder 

NASA 
IND 2960 

5848.15 

5877 97 

5974 005 

6032.72 

6290 -95 

6301.05 

6637.3 

6898.31 

7060.56 

755.2 39 

7875 44 

8106.50 

8718.03 

9383 22 

9414.65 

LOO99 * 1 

~0863.3 

U674 .OC 

NASA 
IR 1280 

5842.9 

5872.2 

5968.4 

6025.6 

6281.6 

6293.9 

6624.8 

6888.4 

'7044.1 

7530 09 

7861.1 

8078.8 

9393 2 

riall( 1x103) 

6017.77 

6073.60 

6126.76 

6264.54 

6445 .OO 

6569.61 

6971 53 

7040.98 

7448.06 

7940 50 

8023.79 

9574 56 

9821.53 

10196.41 

11002.30 

12008.57 

12010.31 

13167.73 

Current Methc 
? r i d 2 (  6017.0: 

5840.9 

5871.1 

5972 4 

6033.4 

6308.4 

6310.3 

6683.3 

6923.9 

7148.8 

7691.5 

7923 -9 

8 W .  5 

9180.8 

9492.9 

10005.7 

10949.3 

11950.2 

12009.9 

(20 semen t s )  
kid3( 5841 .O) 

5848.3 

5879.6 

5978 8 

6043.1 

6315.4 

6319.6 

6695.9 

6928.9 

7162.6 

77-04 -7 

7928 .i 

8683.2 

9214.4 

9496.4 

10039 *9 

10986.6 

11952 *7 

12051 4 

n=O = number of circumferential waves 

m = number of longitudinal half-waves 

Results are single precision IBM 360/75 

'rial4 ( 5848 .O 

5848.01 

5879 22 

5978 56 

6042.75 

6315.67 

6319.13 

6695.42 

6928.68 

7162.07 

7704.21 

7927 093 

8681.50 

9213.05 

9496.24 

10038.53 

10985.08 

11952 57 

12049.73 



Table 5: Panel Buckling of Reinforced Cylinder 

5449.6 

6182.9 

10881.3 

18372.1 

Root No. 

5480.7 

6325.5 

KL314.4 

22557.5 

l = c r i t  i c d l  

2 6204.83 

3 10965.00 

4 18626.90 

I 

CR 1280 w T r i a l  l x l 0  ) 
t Method ( 4  sc 
Trial2( 5480 .O ) 

5470.3 

6280.9 

11168. o 

21631.9 

5470.3 

6281.0 

11168.4 

21633.7 

n=10 = number of circumferential waves 

m = number of longitudinal half-waves 

Results are  single precision IBM 360/75 

Table 6: Buckling of Reinforced Cylinder, Reduction Scheme 

Current Method (Guyan reduction 20 segments 4 regions) 

8 10 6928.68 8130. og 17.3 I I 



Kempner accuracy s h e l l  them. Reference 141 on the other hand, while u t i l i z ing  

basic Lode-Reissner theory, does not simplify some Flcgge accuracy terms such as 

(1 k g/R) when applying compatibility between r ings o r  s t r ingers ,  and the base 

she l l .  I n  addition, out-of-plane bending and twisting terms of the s t i f f ene r s  

are included therein.  

It should be noted tha t  t h i s  problem contains closely spaced eigenvalues 

(see Table 4).  

even more closely spaced. The current method encountered no dLff icul t ies  i n  

I n  the search of harmonics n = 1 and n = 2 the eigenvalues were 
h Sr 

any of these cases. 

The overa l l  shell  buckling problem w a s  a l so  run using the matrix 

reduction scheme currently i n  the STARS -2B, -2V programs. 

shown i n  Table 6. A s  can be seen, reducing the 20 segments t o  4 regions does 

not a f f e c t  the lowest roo t  predictions, b u t  does decrease the accuracy of the 

The r e su l t s  are 

estimates f o r  the higher roots.  Thus, a consistent Guystn scheme can be used t o  

analyze problems where ideal izat ions demand a large number of segments. It is  

recognized tha t  t h i s  scheme is basical ly  f o r  the reduction of s t a t i c  s t i f fnes s  

matrices, and other reduction schemes ( for  modal-eigenvalue problems) should be 

studied. However, the results of the current test problem serve t o  show the 

appl icabi l i ty  of even the simpler reduction scheme within the accuracy of the 

STARS framework. 

It is in te res t ing  t o  qua l i ta t ive ly  compare the above convergence- 

character is t ics  w i t h  those of BOSOR3 f o r  a similar, s t i f fened cylinder problem 

(Ref .  138). I n  the S’PARS-2B s t i f fened cylinder problem, the analysis w a s  

started w i t h  an overa l l  buckling load estimate of 17.1% of the converged 

c r i t i c a l  load, and i n  four i t e r a t ions  the successive guesses were within .OOOl% 

of each other. I n  the STARS-2B panel problem, the corresponding numbers were 
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18.28$, and i n  three i te ra t ions ,  r e su l t s  were within .ox2876 of each other. 

a s i m i l a r  s t iffened cylinder problem solved w i t h  BOSOR3, using 91 f i n i t e  d i f fe r -  

ence s ta t ions,  and s t a r t i ng  w i t h  a buckling load estimate of 99.576 of the con- 

verged c r i t i c a l  load, there i s  no convergence i n  single precision on the Univac 

1108 computer. 

i t e ra t ions  the successive guesses are within .00383$ of’ each other. 

a l so  be noted i n  the comparison that the STARS-2B technique a l so  provided 

excellent estimates t o  a large number of higher roots,  while BOSOR3 found only 

the s ingle  lowest c r i t i c a l  value. 

convergence, as well  as the results provided (single o r  many roots) by each of 

the  methods, is  due t o  two factors,  

resu l t s  is  the f a c t  that  the matrices generated by the current numerical 

integration procedure are more accurate than those obtained by e i the r  f i n i t e  

differences or the f i n i t e  element method. 

available i s  simply the r e s u l t  of using d i f fe ren t  numerical eigenvalue solution 

schemes. 

In  

Use of double precision produced convergence, and after f i v e  

It must 

The difference i n  accuracy and speed of 

The major difference i n  the quali ty of the 

The number of roots immediately 

Numerical Examples - ProbLem 3: 

problem studied i n  the present investigatiori is the PS-9 prolate spheroid, 

tested experimentally a t  the David Taylor Model Basin [153) . 
a variety of theoret ical  resu l t s  are available,  and a r e  tabulated i n  Fig. 26. 

The solution of Mushtari  and Galimov[l54) is  based on the assumption that many 

lobes develop i n  both the circumferential and meridional directions.  

A s  shown i n  Figure 26, the th i rd  s t a b i l i t y  

For t h i s  shell, 

As 

apparent from the experimental r e su l t s  (n = 3), t h i s  is  evidently not the case 

fo r  this  shel l .  The e r ror  i n  the theore t ica l  predictions of Reference 153 is  

probably due t o  the assumption that the buckling deformation i s  confined t o  a 

narrow equatorial  band of the shel l .  
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t 

> 197 
208.8 - 

~ ~~~ 

Present Investigation 
DTMB Experimental Results ( R e f .  153) 
DTMB Theory ( R e f .  153) 
Cohen [ll7] 
Kalnins [ 118 J 
Mushtari & Galimov [154] 

197 197 
(139.3) 138.7 174.0 

139.23 - 
95.5 p s i  (no harmonic predict ion)  

5 E = 3.25 x 1 0  ps i .  
Lt = .4 
t = .189" 
Load = uniform external 

pressure 

n = 2  n = 3  

* 
-f- membrane prestress  and l ive  pressure f i e l d  temns included 
f predeformation neglected 

++++ a l l  consistent nonlinear terms retained 

*** a l l  consistent nonlinear terms retained (pres t ress  matrices calculated with 
double precis  ion ari thmetic ) 

only membrane pres t ress  terms included 

Figure 26 Hydrostatically Loaded Prola te  S p h d d  
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In the present investigation, the effects upon the critical buckling load 

of various nonlinear terms in the Equations (4-6, 7) were studied. The first 

number i n  Fig. 26 (*) is the buckling load based on the assumption that 

only the membrane prestress terms (NeP, N 

second value (t) is the buckling load based on the inclusion of the pressure 

) are  significant. The 
Cpp 

rotation terms (feB, fVB, fCB in Eq. (4-3)) but with the assumption that 

= E(n) = 0. The third buckling load ($) was calculated by retaining all  
eo Cpo 

nonlinear terms involving pressure o r  prestress,  and neglecting only initial 

deformation. 

on retaining a l l  terms i n  Equations (4-6, 7), where the (**) r e su l t  a l so  

The f i n a l  values of the buckling load, (**) and (*) , are based 

includes the e f fec t  of double precision arithmetic i n  the calculation of the 

s t i f fnes s  matrices. It may be observed tha t  the greatest  e f fec t  is obtained 

from the inclusion of the  pressure rotat ion terms, and tha t  the other e f fec ts  

are negligible by comparison. This is not surprising i n  the present problem 

since a l l  the load is  i n  the form of pressure, and predeformtion (rotat ion)  

is  expected t o  be minimal. 

The buckling loads predicted i n  t h i s  investigation and those of Cohen [117] 

and Kalnins [ ~ 8 ]  are based on numerical integration. They are i n  excellent 

agreement with the experimental resu l t s .  It is  therefore apparent, inasmuchas 

the c lass ica l  buckling load is obtained by experiment, tha t  t h i s  prolate 

spheroid is not imperfection sensit ive.  

buckling loads w i l l  not be ident ical  due t o  d i f fe ren t  assumptions i n  the 

theoret ical  formulations. Cohen uses Novozhilov [71] shel l  theory. Notice, 

tha t  the number i n  parentheses given i n  Fig. 26, i s  obtained by the use of a 

nonlinear prebuckling state. I n  the present investigation and tha t  of Kalnins 

11181 the Love-Reissner [16] shell  theory is  employed. However, Kalnins 

neglected some nonlinear terms, whereas i n  th i s  investigation a l l  consistent 
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terms [loo, 1371 are retained. 

Numerical Examples - Problem 4: The last test  problem involves the study of the  

e f f ec t s  of axisymmetric prestress  upon the vibration character is t is  of the 

spherical  cap shown i n  Figure 27. 

available r e su l t s  i n  Figure 28. 

agree w e l l  with the Ebner [169] calculations using the V U R S  [281 program, 

except f o r  the n = 0 harmonic where a substant ia l  disagreement is found. 

Although Ebner claims qual i ta t ive agreement with Reference 170 wherein r e su l t s  

are available f o r  the free vibration of spherical  caps with R/h = 100 and an 

18" half opening angle, the following comparisons show otherwise: 

The present analysis is compared t o  other 

A s  can be seen,the present STARS-2V resu l t s  

Ebner 
"t'h",= ixg3 

STARS -2V 
1.2135 

R e f .  170 Harmonic 
E Z g -  0 

Wo= 1.1730 1.15775 1.1907 1 

qn,= 1.3425 1.3325 1.4398 2 

4Qo= 1.6522 1.6359 1.8166 3 

W'Qo= 2.0629 2.0342 - 4 

A s  can be seen above, Ebner's zeroth harmonic frequency is greater than tha t  of 

R e f .  170, whereas the frequencies f o r  a l l  the other harmonics are smaller. 

Similarly Ebner's &,is greater $han %. 
consistent wfth the present analysis or R e f .  170. 

Cohen program [166] has confirmed the STARS-2V r e su l t s  tabulated above. 

Neither of the above two items are 

A fur ther  analysis with the 

The discrepancy i n  the Ebner calculations may possibly be explained by 

erroneous boundary conditions a t  the apex. Set t ing a l l  displacements equal t o  

zero as w e l l  as the meridional rotat ion is sat isfactory only f o r  n 2 2, a t  the 

apex. With t h i s  boundary condition u t i l i zed  f o r  n = 0, the STARS-2V program 
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yields  a value of ((g/slOl2 = 2.29136. Thus f o r  t h i s  problem the apex boundary 

ondition has a substant ia l  e f fec t  upon the frequency resu l t s ,  

was  found i n  the Kalnins [118] buckling analysis of problem 3. 

effect fo r  the buckling load i n  that problem proved negligible (see previous 

A similar e r ror  

However, the 

discussion and Fig. 26). ; 



R = 100 IN. 

Q = 200 

E = lo7 psi 

v =  113 
= 2.59 x  IO-^ LB - SEC*/IN? 

A-6 

Fig. 27 Sha l lm Spherical Cap 
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2 

(w/Ro)2 

R = 2106 rad/sec 
P- = 1466 psi 
0 

.245202 

0 

0 Cahlated Linear Buckling Loads [P8] \ 
\ 

I.. 4725 8 \ 
\ 

n = 0 (Present \ 
Analysis) 

1.37533 
1 

0 

4.255556 k-, 

0 0.2 0.4 0 .6  0.8 1 .0  1 .2  1.4 

P/Po 

Fig. 28 Variation of Natural Frequencies of Spherical Cap 
with Nonlinear Prestress 
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APPENDIX A 

One method of obtaining the necessary relationships between s t ress  

resultants and strains for eccentrically reinforced shells is based upon an 

"equivalent energy approach. The energy of the composite system in 

terms of stress resultants and strains is equated to the energy of an equiv- 

alent orthotropic shell. 

The strain energy of a circumferential ring is given by 1073 

where E R  and G 

the material from which the ring stiffeners a r e  made,and JR is the tor-  

sional constant of the ring stiffeners. 

energy of each ring uniformly over one half the panel spacing on each side 

of the ring. 

per panel length in the q direction may be written in the form 

a r e  the modulus of elasticity and the shear modulus of 

We will  now distribute the strain 

Lf the rlngs a r e  spaced a distance S R  apart, the total energy 

Assuming that the stiffeners a re  bonded to the shell and substituting Equation 

(1-13) for the total strain e o ,  we obtain 



This may be rewritten as 

2 G  J 
ER k t k JdOdq 

1 'R 2aro ERAR 2 
" R - 5 6  4 ( 7 ' 0  0 - E R C R A R E e o k O t r h  0 2 

(A-3) 

where 

s dAR = AR s C d A R = C  R R  A 
AR AR 

Similarly, the distributed strain energy per panel length in the B 

of n meridional stiffeners spaced a distance S 

given by 

direction 

apart (n Ss = 2 a r o )  is S 

2 - E  C A E k t-Ik ES t- GS Js k ')de dq s s s 4Do 0 2 s q 2 q O e  

The strain energy of the unstiffened shell along a panel length is 

This expression may be rewritten as 

(A-5a) 

2aro SR 

U = i l  1 ( N e ~ 0 ; M 6 k e t N  E - M  50 k v t N  cpe y@o 
0 0 q Po 

(A - 5b) 
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Combining like terms of Equations (A- 3) , (A-4) and (A-5b) 

using the two-dimensional s t ress  -strain relations, we can obtain 

and 

GS Js GR JR k 
-G h3 

M = .&.kcpe- 
cpQ 

k -  
cpe sS cpe ‘R (A-6) 

where (see Figure A-1) and subscripts 9 and cp indicate ’coordinate directions, and 

= cross-sectional a rea  of the rings and the meridional 

stiffeners , respectively ; 

= eccentricity of the rings and the meridional stiffeners, 

respectively,measured from the reference surface of 

the shell (inwards positive); 

= moment of inertia of the rings and the meridional stiffeners, 

respectively, about the basic shell centroidal axis; 
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r 
0 

3 

Figure A-1 Ring Stringer Reinforcement 
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torsional constant of the rings and the meriodional stiffeners, 

respectively ; 

spacing of the rings and the meridional stiffeners, 

r e s pe ctively 

Equations (A-6) a re  the relations between the s t ress  resultants and 

the components of strain and curvature for the ring and stringer reinforced 

shell. They may be employed in lieu of Equations (1-18) in  cases where the 

spacing of the ring and stringer reinforcement is such that the smearing 

technique yields valid results. 

following abreivated form, 

Equations (A-6) can be rewritten in the 

N q = K  2ZEPo K12 € e o  - ‘22 kp - NTq 

Me = Dll k,e ’ D 1 2 k q t  C l l E B o - M T B  

TSo 
- M  

22 €q0 
t c  Mq= D22 kp + D12 k e  

where 

3 
ER AR - Eeh ER ‘R 

D 1 l =  1 Z ( f - v q  e v e  -sR 
- E e h  

K1l-  1 +SR 
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E h  

K33 = G q e h  

ER ‘R *R 
sR = 

- 
D22 - 

O33 - 

c22 - 

- 

- ES ‘s AS 

sS (A-8) 

Notice that inasmuchas the assumption was made in the Love-Reissner-Kempner 

first order theory that M = - M 

implied that k = IC From physical intuition, this relation may be 

approximate if the effects of the ring and meridional stiffeners a r e  not identical, 

that is, the terms 

a re  not equal. 

, from the last of Equations (A-7) it is 
Qq rpQ 

@ w 

GRJR/SR , and GsJs/Ss , in the torsional constant D33 

Although Equations (A-6) and (A-7) were derived for  a ring and 

stringer-stiffened shell, they could be extended to other cases by a suitable r e -  

definition of the coefficients Kij, C.. and D..  . For  example, they may be ex- 

tended to  stiffened sandwich shells with equal or unequal face sheets, o r  to r ing  
1J 1J 

reinforced shells with corrugated skin in the meridional direction. Equations 

for the Kij, C . .  and D.. coefficients for the aforementioned cases a r e  de- 
1J 1J 

rived in  References 32, 108. 

A more general form of the Equations (A-7) for layered media may 

also be obtained: 



These equations a re  derived in Reference 32 . 
surface about which N is independent of k 

upon Y@ 

They a re  referred to a 

and M is not dependent 
@' @ @ 

These equations may be employed in cases involving shells with: 
0 

a)  homogeneous, sandwich, or  multilayered skin reinforced by waffles 

at an arbitrary angle to the 0 , p coordinate system , 
b) semi-sandwich shells (skin t corrugations) . 

The appropriate expressions for  the K.. , C.. and D.. coefficients for each 

case may be found in Seference 32 . 1J 1J 13 

For a general isogrid reinforcement Equations (A-9c, f )  must be revised 

as follows: 

(A-10) 

The necessary s t i f fnes s  terms f o r  the  p = 30" isogrid can then be defined as 

3 
D= - - 12 -vFEe:e 1-v v ecp ) - Y ( 4 )  S 
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1-v v S 
- 

K22 - 
cpe 9cp 

K 33 = “ ” + E R A ( $ )  cpe S 
33 I 2  S 

(A- 11) 



The most consistent method of analyzing shells reinforced w i t h  widely spaced 

rings is t o  consider the shel l  segments and the rings as discrete structural 

members subjected t o  the given external loads and to  the required interface 

conditions. 

include vibrations, 

set, and t'he ring-shell connection can be eccentric, 

for t'he programs are defined as: 

The theory utilized is  an expansion of that due t o  Cheney r168-J t o  

"he ring centroids and s'hear centers are allowed t o  be off- 

The necessary ring matrices 

R i n g  mass matrix (ring coordinates) 

R i n g  centrifugal acceleration laad matrix (global coordinates) 

R i n g  prestressed stiffness matrix (ring coordinates) 

Ring thermal load matrix (ring coordinates) 

Transformation m a t r i x  t o  attac'hed shel l  joint and shell  global 
coordinate system 

The ring matrices are first converted t o  the  shell  joint and coordinate 

system, 

and %hen stacked appropriately fo r  segnent and region joints. 

matrix is computed on the basis of a linear (radial) thermal distribution f o r  the 

ring. 

The thermal load 

The necessary matrices are presented in detail below: 
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T 

M 33 = - p w 2 k  +3) 
M41 = M4e = M43 = 0 

M44 = -pw2 (I. + 1.) 

$4 = -Y(2rc A) 



2 E I  4 
d c "  + GJn2 

+ 4 2 3  r r r  
S 

r r  k 
r c  c s  

-mYcn 3 

3 r k R =  
S 32 

-- 
- 2  

2 E 1  2 d c n 2  GJn 
3 

EIxn 
+- 

S 

+ * r 2 r 2  r c s  

2 E 1  2 
d c  GJn2 +- 

S 
2 r 

E*YC E1x 2 -- - (1 - e,) + F ( n  eo- 
'44 5% c s  

E&(mnxC+bn) 

S 
% =  r 1 

-EaA(mnxc+b )y E a 1  m c-z 
S rS 

"R4 = r 

T -T I o  
I o  

m =- 
n x -x 



T = T  E - 1  
'13 A22 A44 

hihere the necessary notation is  defined in  Figure B-1 



2 
A temperature 3: 

I ' zentroidal y axis I 
I 

shear center 

shear center 

Figure B-3. Discrete Ring Geometry 



APPENDIX C 

I .  

The system of Equations (1-27) through (1-29) , 8s derived in Chapter 

1, contains a singularity a t  r = 0 .  In order to eliminate this singularity, c> 
and establish a suitable set  of equations applicable a t  the apex we will  make 

the terms in parentheses in Equations (1-14c, a, f )  and {l-laf) evaluated.at 1 8 

c p ' 0  equal to zero , and tnus apply L' Hospital' B rule. This may be accom- 

plished if the following conditions a re  satisfied at  cp = 0 

u , e  t v  = v , e  - u  = w , e  = 0 

- 
cp, e - we - %, e W 

The strain displacement relations at a smooth apex may then be written as 

4 

1 - - - (w,  t v )  
we r1 rp 

(C-2)  

0.4 In obtaining the above relations, Equation (1-8) was ased to eliminate r 

The equilibrium equations at  the apex Become: 

N e , e t 2 N  = O  

N t N  = o  
rpe 

rp rpe,e - N e  
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M e , e t 2 M  = 0 
500 

In a fashion similar to that of Reference 20 , the variables of 

Equations (C-2, 3 ) may be expanded in a Fourier series in the 8 direction, 

which involve only the part  of the series (2-2) with the primed amplitudes. 

Thus from Equations (C-1) and (C-3) boundary conditions for the different 

harmonics a re  obtained, 'while from Equations (1-27) through (1-29), using 

L* HospitalP s rule and the established boundary conditions, the appropriate 

differential equations a re  obtained [ 6 , 81 . 
For the axisymmetric case (n=O) the following conditions a re  ob- 

tained from Equations (C-1) through (C.-3) 

( 0 )  v =  0 

Applying these relations and L'Hospital's rule to the Equation system (1-27) 

through (1-29) , we obtain at the apex: 
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N A u L . = o  
r l  

For the first antisymmetric harmonic (nt 1) the following conditions 

a r e  obtained from Equations (C-1) through (C-3 )  [ 201 . 
(1) (1) u =  - v  
(1) w =  0 



Applying these relations, and L' Hopital' s rule to the Equations (1-27) 

through (1-29) we obtain, at the apex: 

(1) 
Ne = 0 

(1) 
Me = 0 

For the second harmonic (n=2), the following conditions a r e  obtained from 

Equations (C-1) through ((2-3) [ 201 
t I 

(2 1 (2) (2) 
Ne = N 

cp 
u = o  



Applying these relations , and L' Hopital' s rule, to the Equations (1-27) 

through (1-29),  we obtain, at the apex: 



Finally for the other harmonics (n - > 3) the following conditions a re  obtained 

from Equations (C-1) through (C-3)[20] . 

(4 
"e = 0 

(4 
= o  

cpe 
N 

Applying these relations, and L' Hopital' s rule to the Equations (1-27) 

through (1-29) we obtain, at the apex: 

(C - 10) 

(C-11) 



It should be noted that the nonlinear terms in these equations may be 

obtained from Equations (2.9a) and (2.9b). 

above equations are  valid only for a smooth apex (sin 9 = 0, cos p = 1) . 
This method may be employed to obtain the appropriate equations,for more 

complex apices. 

It must be emphasized that the 

For  a non-smooth apex (p = p0-+ 0): 

s i n p  = s i n p  =jk 0 

1 
0 

cos 4p = cos Po .f 

Equations (C-5) through (C-11) a re  utilized in the following manner 

in the numerical procedure discussed in Chapter 3. 

ditions from Equations (C-4,6,8, 10) are set in displacement form into the 

boundary condition matrix for the structure. 

a r e  used only in the first step of the Runge-Kutta numerical integration pro- 

cedure, when it is applied to the edge ro = 0 of the segment adjacent to the 

The apex boundary con- 

i 

The apex Equations (C-5, 7,9,11) 

apex. 

employed, This procedure, however, is rather cumbersome, and it will be 

used only when the applied loading varies rapidly near the apex. 

cases, the apex boundary conditions (C-4, 6,8, 10) may be satisfied at a circle 

of a very small  but finite value of ro . 
this approximation will be satisfactory at points away from the apex [ 6 , 81 . 

In subsequent steps the sets of Equations (1-27) through (1-29) are  

In other 

The results obtained on the basis of 



APPENDIX 1) 

CONVERSION OF U.S. CUSTOMARY UNITS TO S I  UNITS 

S I  Unit ** 

The Internat ional  System of Units (SI )  was adopted by the 

Eleventh General Conference on Weights and Measures i n  1960. Conversion 

fac tors  f o r  the uni t s  used i n  t h i s  report  are given i n  the  following 

Unit 

in .  
ks i 

tab l e  : 

Physical quantity 

Length 
S t ress  modulus 

f ac to r  (*) 

0.0254 

6.895 x lo6 

St ress  resu l tan t  lbf  /in. 

"F Temperature change 

175 * 1 

519 

meters (m> I 

newt ons/me te r  

Kelvin ( K )  
(N/m)  

* Multiply value given i n  U.S. Customary Unit  by conversion f ac to r  t o  
obtain equivalent value in  S I  Units. 

+s+ Prefixes t o  indicate  multiple of un i t s  are as follows: 

I deci  (a) I 10-I- I 
cen t i  ( c )  

m i l l i  (m) 
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